Probabilités de Lévy sur d et équations différentielles stochastiques linéaires

J. B. Gravereaux

Publications mathématiques et informatique de Rennes (1982)

  • Issue: 1, page 1-42

How to cite

top

Gravereaux, J. B.. "Probabilités de Lévy sur $\mathbb {R}^d$ et équations différentielles stochastiques linéaires." Publications mathématiques et informatique de Rennes (1982): 1-42. <http://eudml.org/doc/274603>.

@article{Gravereaux1982,
author = {Gravereaux, J. B.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {1-42},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Probabilités de Lévy sur $\mathbb \{R\}^d$ et équations différentielles stochastiques linéaires},
url = {http://eudml.org/doc/274603},
year = {1982},
}

TY - JOUR
AU - Gravereaux, J. B.
TI - Probabilités de Lévy sur $\mathbb {R}^d$ et équations différentielles stochastiques linéaires
JO - Publications mathématiques et informatique de Rennes
PY - 1982
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 1
EP - 42
LA - fre
UR - http://eudml.org/doc/274603
ER -

References

top
  1. [1] Gnedenko et Kolmogorov. (1954). Limit distributions for sums of independent variables. (Addison-Wesley, Cambridge). Zbl0056.36001
  2. [2] Kumar A et Schreiber B.B.Self decomposable probability measures on Banach spaces. (Studia Mathematica, Tome 53, 1975, p. 55 à 71) . Zbl0276.60012MR385949
  3. [3] Loeve M.Probability theory. (1950, New-York). Zbl0108.14202MR123342
  4. [4] Sharpe M.Operator-stable probability distributions on vector groups. (Trans. Amer. Math. Soc, 136, 1969, p. 51 à 65). Zbl0192.53603MR238365
  5. [5] Urbanik K.Extreme point method in probability theory. (Lecture notes in mathematics n° 472, Springer-Verlag, p. 169 à 194). Zbl0341.60010MR394806
  6. [6] Urbanik K.Lévy's probability measures on Euclidean spaces. (Studia Mathematica, tome 44, 1972, p. 119 à 148). Zbl0251.60022MR310934
  7. [7] Urbanik K.Lévy's probability measures on Banach spaces. (Studia Mathematica, Tome 63, p. 283 à 308). Zbl0404.60010MR515497
  8. [8] Yamazato M.Unimodatity of infinitely divisible distributions functions of class L. (Annals of Probability, 1978, vol. 6 n° 4, p. 523 à 531). Zbl0394.60017MR482941
  9. [9] Jurek Z.J.Convergence of types, selfdecomposabitity and stability of measures on linear spaces. (1981, Lectures notes in Mathematics, n°860, p.257 à 267). Zbl0463.60006MR647967
  10. [10] Jurek Z.J. and Smalara J.On integrability with respect to infinitely divisible meesures. (Bull. Ac. Polonaise des Sciences, Vol XXIX, n°3-4, 1981). Zbl0475.60004
  11. [11] Jurek Z.J.Structure of a class of operator-self-decomposable probability measures. (The Annals of Probability, 1982, Vol. 10, n°3, p. 849 à 856). Zbl0489.60007MR659555
  12. [12] Jurek Z.J.An integral representation of operator-selfdecomposable. random variables (Bull. Ac. Polonaise des Sciences, Vol.XXX, n°7-8, 1982). Zbl0503.60063
  13. [13] Wolfe S.J.On a continuous analogue. of the. stochastic difference equation x n = ρ X n - 1 + B n . (Stochastic processes and their applications, 12, 1982, p.301 à 312). Zbl0482.60062MR656279
  14. [14] Zabczyk J.Stationary distribution for linear equations driven by general noise. (Report n°73, August 1982, Universität Bremen). Zbl0534.60049MR742808
  15. [15] Jurek Z. I. and Vervaat W.An integral representation for selfdecomposable Banack space valued random variables. (Z.W.62, p.247 à 262, 1983). Zbl0488.60028MR688989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.