Théorie combinatoire de la dimension d'une variété algébrique

Marc Giusti

Publications mathématiques et informatique de Rennes (1985)

  • Volume: 4, Issue: 4, page 163-172

How to cite

top

Giusti, Marc. "Théorie combinatoire de la dimension d'une variété algébrique." Publications mathématiques et informatique de Rennes 4.4 (1985): 163-172. <http://eudml.org/doc/274646>.

@article{Giusti1985,
author = {Giusti, Marc},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {dimension of algebraic projective variety},
language = {fre},
number = {4},
pages = {163-172},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Théorie combinatoire de la dimension d'une variété algébrique},
url = {http://eudml.org/doc/274646},
volume = {4},
year = {1985},
}

TY - JOUR
AU - Giusti, Marc
TI - Théorie combinatoire de la dimension d'une variété algébrique
JO - Publications mathématiques et informatique de Rennes
PY - 1985
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 4
IS - 4
SP - 163
EP - 172
LA - fre
KW - dimension of algebraic projective variety
UR - http://eudml.org/doc/274646
ER -

References

top
  1. [BU1] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Dissertation, U. Innsbruck, Austria, (1965). Zbl1245.13020
  2. [BU2] B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraisches Gleichungssystems, Aequationes Math.4 (1970), 374-383. Zbl0212.06401MR268178
  3. [BU3] B. Buchberger, A theoretical basis for the reduction of polynomials to canonical forms, ACM SIGSAM Bull., 39 (1976), 19-29. MR463136
  4. [D] M. Demazure, Notes informelles de calcul formel, prépublications Centre de Mathématiques de l'Ecole Polytechnique (1984). 3. Le monoïde de Mayr-Meyer. 4. Le théorème de complexité de Mayr-Meyer. 
  5. [GA1] A. Galligo, A propos du théorème de préparation de Weierstrass, Lect. Notes in Math.409 (1973), 543-579. Zbl0297.32003MR402102
  6. [GA2] A. Galligo, Algorithmes de construction de bases standard, preprint Université de Nice (1983). 
  7. [GI] M. Giusti, Some effectivity problems in polynomial ideal theory, in Eurosam 84, Lecture Notes in Computer Science174, Springer (1984), 159-171. Zbl0585.13010MR779123
  8. [GR] H. Grauert, Über die Deformationen isolierter Singularitäten analytischer Mengen, Inventiones Math.153 (1972) Zbl0237.32011MR293127
  9. [HI] H. Hironaka, Resolution of singularities of analgebraic variety over a field of characteristic zero, Ann. Math.79, (1964) 109-326. Zbl0122.38603MR199184
  10. [LA1] D. Lazard, Algèbre linéaire sur K [ x 1 , . . . , x n ] et élimination, Bull. Soc. Math. France, 105 (1977), 165-190. Zbl0447.13008
  11. [LA2] D. Lazard, Résolution des systèmes d'équations algébriques, Theoretical Computer Science15 (1981), 77-110. Zbl0459.68013MR619687
  12. [LA3] D. Lazard, Commutative algebra and computer algebra, Lect. Notes in Comp. Sciences144 (1982), 40-48. Zbl0552.68047MR680052
  13. [LA4] D. Lazard, Gröbner bases, Gaussian elimination and resolution of Systems of algebraic equations, in Eurocal 83, Lecture Notes in Computer Science162, Springer (1983). Zbl0539.13002MR774807
  14. [M-M] E. Mayr, A. Meyer, The complexity of the word problems for commutative semi-groups and polynomial ideals, Adv. in Maths.46 (1982), 305-329. Zbl0506.03007MR683204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.