Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps

Pierre Jamet

Publications mathématiques et informatique de Rennes (1977)

  • Issue: S4, page 1-16

How to cite

top

Jamet, Pierre. "Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps." Publications mathématiques et informatique de Rennes (1977): 1-16. <http://eudml.org/doc/274753>.

@article{Jamet1977,
author = {Jamet, Pierre},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {S4},
pages = {1-16},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps},
url = {http://eudml.org/doc/274753},
year = {1977},
}

TY - JOUR
AU - Jamet, Pierre
TI - Estimations d'erreur pour l'approximation de l'équation de la chaleur dans un domaine variable par des méthodes d'éléments finis espace-temps
JO - Publications mathématiques et informatique de Rennes
PY - 1977
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/274753
ER -

References

top
  1. [1] R. Bonnerot et P. Jamet, A second order finite element method for the one-dimensional Stefan problem. Int. J. Numer. Meth. Eng., 8, 811-820, 1974. Zbl0285.65071
  2. [2] R. Bonnerot et P. Jamet, Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements. A paraître dans J. Comp. Phys., 1977. Zbl0364.65091MR474875
  3. [3] P. Ciarlet et P-A. Raviart, General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Rat. Mech. Anal., 46, 177-199, 1972. Zbl0243.41004MR336957
  4. [4] M. Crouzeix, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta. Thèse, Univ. de ParisVI, 1975. 
  5. [5] J. Douglas et T. Dupont, A finite element collocation method for quasilinear parabolic equations. Math. Comp., 27, 121, 17-18, 1973. Zbl0256.65050MR339508
  6. [6] G. Fichera, On a unified theory of boundary value problems for ellipticparabolic equations of second order, Boundary problems in differential equations, Univ. of Wisconsin press, 1960. Zbl0122.33504MR111931
  7. [7] P. Jamet, Numerical methods and existence theorems for parabolic differential equations whose coefficients are singular on the boundary, Math. Comp., 22, 104, 721-743, 1968. Zbl0174.47503MR255084
  8. [8] P. Jamet, Estimations d'erreur pour des éléments finis droits presque dégénérés, RAIRO, Anal. Num., 10, 3, 43-61, 1976. Zbl0346.65052MR455282
  9. [9] P. Jamet, Elements finis espace-temps pour la résolution numérique de problèmes de frontières libres, Méthodes numériques en mathématiques appliquées, Presses de l'université de Montréal, 1976. Zbl0373.65059
  10. [10] P. Jamet et R. Bonnerot, Numerical solution of the Eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces, J. Comp. Phys., 18, 1, 21-45, 1975. Zbl0303.76030MR381513
  11. [11] P. Lesaint et P-A. Raviart, On a finite clement method for solving the neutron transport equation, Mathematical aspects of finite e1ement in partial differential equations, C de Boor editor, Academic press1974. Zbl0341.65076
  12. [12] J. L. Lions, Sur les problèmes mixtes pour certains systèmes paraboliques dans des ouverts non cylindriques, Annales de l'institut Fourier, 7, 143-182, 1957. Zbl0141.29403MR102666
  13. [13] A. L. Mignot, Méthodes d'approximation des solutions de certains problèmes aux limites linéaires, Rendiconti del seminario matematico della università di Padova, volume XL, 1968. Zbl0169.43802
  14. [14] M. Mori, Stability and convergence of a finite element method for solving the Stefan problem, publications of the research institute for mathematical sciences, Kyoto University, 12, 2, 1976. Zbl0353.35002MR433919
  15. [15] M. Mori, A finite element method for solving moving boundary problems, IFIP working conference on modelling of environmental Systems, Tokyo, 167-171, 1976. 
  16. [16] J. T. Oden, A general theory of finite elements II. Applications. Int. J. Numer. Meth. Eng.1, 247-259, 1969. Zbl0263.73048
  17. [17] P-A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, Topics in numerical analysis, J.J.H. Miller editor, Academic press, 1972. Zbl0293.65086MR345428
  18. [18] M. F. Wheeler, An H-1 Galerkin method for parabolic problems in a single space variable, SIAM J. Numer. Anal., 12, 5, 1975. Zbl0331.65075MR413556
  19. [19] O. C. Zienkiewicz et C. J. Parekh, Transient field problems : two-dimensional and three-dimensional analysis by isoparametric finite elements, Int. J. Numer. Meth. Eng.2, 61-71, 1970. Zbl0262.73072
  20. [20] M. Zlamal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp., 29, 130, 350-359, 1975. Zbl0302.65081MR371105
  21. [21] M. Zlamal, Finite element methods in heat conduction problems, Proceedings of the Brunel conference on finite elements, 1975, to appear. MR451785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.