Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux

Jacques Rousseau-Egele

Publications mathématiques et informatique de Rennes (1981)

  • Issue: 1, page 1-37

How to cite

top

Rousseau-Egele, Jacques. "Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux." Publications mathématiques et informatique de Rennes (1981): 1-37. <http://eudml.org/doc/274761>.

@article{Rousseau1981,
author = {Rousseau-Egele, Jacques},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {1},
pages = {1-37},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux},
url = {http://eudml.org/doc/274761},
year = {1981},
}

TY - JOUR
AU - Rousseau-Egele, Jacques
TI - Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux
JO - Publications mathématiques et informatique de Rennes
PY - 1981
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 1
EP - 37
LA - fre
UR - http://eudml.org/doc/274761
ER -

References

top
  1. [1] R. L. Adler : F-expansions revisitedSpringer L.N 318 (1973), pp 1-5. Zbl0257.28012MR389825
  2. [2] P. Billingsley : Convergence of probability measures, 1968. Zbl0172.21201MR233396
  3. [3] A. Boyarsky et M. Scarowsky : On a class of transformations which have unique absolutely continuous invariant measuresTrans. A.M.S., volume 255 (1979), pp 243-262. Zbl0418.28010MR542879
  4. [4] R. Bowen : Bernouilli maps of the intervalIsrael Journal of Math, vol.28 (1977), pp 161-168. Zbl0377.28010MR453974
  5. [5] R. Bowen : Invariant measures for markov maps of the intervalCommun. Math. Phys.69 (1979), pp 1-17. Zbl0421.28016MR547523
  6. [6] L. Breiman : Probability, 1968. MR229267
  7. [7] W. Doeblin : Remarques sur la théorie métrique des fractions continuesCompositio Math., Vol 7 (1940), pp 353-371. Zbl0022.37001MR2732
  8. [8] N. Dunford et J. T. Schwartz : Linear operators, part I, (1967). Zbl0283.47002
  9. [9] R. Fortet : Sur une suite également répartieStudia Math. vol. 9 (1940), pp 54-69. Zbl0063.01412MR5546JFM66.1298.01
  10. [10] B.V Gnedenko et A. N. Kolmogorov : Limit distributions for sums of independant random variables, (1954). Zbl0056.36001MR62975
  11. [11] M.I. Gordin : Stochastic processes generated by number-theoretic endomorphismsSoviet Math. Dokl., vol. 9 (1968), pp 1234-1237. Zbl0174.49103
  12. [12] M.I Gordin : The central limit theorem for stationary processesSoviet Math. Dokl., vol. 10 (1969), pp 1174-1176. Zbl0212.50005MR251785
  13. [13] M.I. Gordin et B.A. Lifsic : The central limit theorem for stationary markov processesSoviet Math. Dokl, vol 19 (1978), pp 392-394. Zbl0395.60057MR501277
  14. [14] F. Hofbauer et G. Keller : Ergodic properties of invariant measures for piecewise monotonic transformationspreprint. Zbl0485.28016MR656227
  15. [15] C.T. Ionescu Tulcea et G. Marinescu : Théorie ergodique pour des classes d'opérations non complètement continuesAnnals of Math., Vol. 47 (1946), pp 140-147 Zbl0040.06502MR37469
  16. [16] M. Kac : Annals of Math., vol. 47 (1946), pp 33-49. Zbl0063.03091MR15548
  17. [17] G. Keller : Un théorème de la limite centrale pour une classe de transformations monotones par morceauxCo. R. Acad. Sc.Paris, série A, 291 (1980), pp 155-158. Zbl0446.60013MR605005
  18. [18] A. Lasota et J.A Yorke : On the existence of invariant measures for piecewise monotonie transformationsTrans. A.M.S., vol. 186 (1973), pp 481-488. Zbl0298.28015MR335758
  19. [19] E. Le Page : Théorèmes limites pour les produits de matrices aléatoiresOberwolfach1981, SpringerLectures Notes, à paraître. Zbl0506.60019
  20. [20] T.Y Li et J.A Yorke : Ergodic transformations from an interval into itselfTrans. A.M.S., vol.235 (1978), pp 183-192. Zbl0371.28017MR457679
  21. [21] D.A Moskvin et A.G. Postnikov : A local limit theorem for the distribution of fractional parts of an exponential functionTh. of Proba. and its Appl., vol. XXIII (1978), pp 521-528. Zbl0421.60021
  22. [22] S.V Nagaev : Some limit theorems for stationnary markov chainsTh. of Proba. and its Appl., vol. II (1957), pp 378-406 Zbl0078.31804
  23. [23] F. Norman : Markov process and learning models, (1972). Zbl0262.92003
  24. [24] W. Parry : On the ß-expansions of real numbersActa Math.Acad. Sc. Hungar., vol 11 (1960), pp 401-416. Zbl0099.28103MR142719
  25. [25] W. Philipp : Some metrical theorems in number theory IIDuke Math. J., 38 (1970), pp 447-458 Zbl0206.34101MR272739
  26. [26] W. Philipp : Mixing sequences of random variables and probabilistic number theoryMemoirs of the American Math. Soc., 114 (1971). Zbl0224.10052MR437481
  27. [27] G. Pianigiani : First return map and invariant measuresIsrael J. of Math., vol. 35 (1980), pp 32-48. Zbl0445.28016MR576460
  28. [28] A. Renyi : Representation for real numbers and their ergodic propertiesActa Math.Acad. Sc. Hungar., vol. 8 (1957), pp 477-493. Zbl0079.08901MR97374
  29. [29] S. Wong : Some metric properties of piecewise monotonic mappings of the unit intervalTrans. A.M.S. vol. 246 (1978), pp 493-500. Zbl0401.28011MR515555
  30. [30] S. Wong : A central limit theorem for piecewise monotonic mappings of the unit intervalThe Annals of Proba., vol. 7 (1979), pp 500-514. Zbl0413.60014MR528327
  31. [31] S. Wong : Hölder continuous derivatives and ergodic theoryJ. London Math. Sc., vol 22 (1980), pp 506-520. Zbl0459.28022MR596329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.