On Finitary Coding of Topological Markov Chains

Wolfgang Krieger

Recherche Coopérative sur Programme n°25 (1981)

  • Volume: 29, page 67-92

How to cite

top

Krieger, Wolfgang. "On Finitary Coding of Topological Markov Chains." Recherche Coopérative sur Programme n°25 29 (1981): 67-92. <http://eudml.org/doc/274762>.

@article{Krieger1981,
author = {Krieger, Wolfgang},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {67-92},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {On Finitary Coding of Topological Markov Chains},
url = {http://eudml.org/doc/274762},
volume = {29},
year = {1981},
}

TY - JOUR
AU - Krieger, Wolfgang
TI - On Finitary Coding of Topological Markov Chains
JO - Recherche Coopérative sur Programme n°25
PY - 1981
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 29
SP - 67
EP - 92
LA - eng
UR - http://eudml.org/doc/274762
ER -

References

top
  1. 1. L. M. Abramov and V. A. Rohlin : The entropy of a skew product of measure preserving transformations. Amer. Math. Soc.Translations48 (1965) 255-265. Zbl0156.06102
  2. 2. R. Adler and B. Marcus : Topological entropy and équivalence of dynamical Systems. Memoirs of the Amer. Math. Soc. Nr. 219 (1979). Zbl0412.54050MR533691
  3. 3. E. M. Coven and M. E. Paul : Endomorphisms of irreducible subshifts of finite type. Math. Systems Theory8 (1974), 167-175. Zbl0309.54032MR383378
  4. 4. J. Cuntz and W. Krieger : Topological Markov chains with dicyclic dimension groups. Journal für die reine und angewandte Mathematik320 (1980), 44-51 Zbl0451.54034MR592141
  5. 5. E. Effros and C. L. Shen : Dimension groups and finite difference equations. J. of Operator Theory2 (1979), 215-231. Zbl0458.46037MR559606
  6. 6. B. Kitchen : preprint. 
  7. 7. W. Krieger : On dimension functions and topological Markov chains. Inventiones Math.56 (1980), 239-250. Zbl0431.54024MR561973
  8. 8. B. Marcus : Factors and extensions of full shifts. Monatshefte f. Mathematik88 (1979), 239-247. Zbl0432.54036MR553733
  9. 9. M. Nasu : Uniformly finite-to-one and onto extensions of homomorphisms between strongly connected graphs. Preprint, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan. Zbl0481.05046MR675863
  10. 10. R. F. Williams : Classification of subshifts of finite type. Ann. of Math.98 (1973), 120-153 Zbl0282.58008MR331436
  11. R. F. Williams : Classification of subshifts of finite type. Errata : Ann. of Math.99 (1974), 380-381. Zbl0282.58008MR391060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.