On Finitary Coding of Topological Markov Chains
Recherche Coopérative sur Programme n°25 (1981)
- Volume: 29, page 67-92
Access Full Article
topHow to cite
topReferences
top- 1. L. M. Abramov and V. A. Rohlin : The entropy of a skew product of measure preserving transformations. Amer. Math. Soc.Translations48 (1965) 255-265. Zbl0156.06102
- 2. R. Adler and B. Marcus : Topological entropy and équivalence of dynamical Systems. Memoirs of the Amer. Math. Soc. Nr. 219 (1979). Zbl0412.54050MR533691
- 3. E. M. Coven and M. E. Paul : Endomorphisms of irreducible subshifts of finite type. Math. Systems Theory8 (1974), 167-175. Zbl0309.54032MR383378
- 4. J. Cuntz and W. Krieger : Topological Markov chains with dicyclic dimension groups. Journal für die reine und angewandte Mathematik320 (1980), 44-51 Zbl0451.54034MR592141
- 5. E. Effros and C. L. Shen : Dimension groups and finite difference equations. J. of Operator Theory2 (1979), 215-231. Zbl0458.46037MR559606
- 6. B. Kitchen : preprint.
- 7. W. Krieger : On dimension functions and topological Markov chains. Inventiones Math.56 (1980), 239-250. Zbl0431.54024MR561973
- 8. B. Marcus : Factors and extensions of full shifts. Monatshefte f. Mathematik88 (1979), 239-247. Zbl0432.54036MR553733
- 9. M. Nasu : Uniformly finite-to-one and onto extensions of homomorphisms between strongly connected graphs. Preprint, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan. Zbl0481.05046MR675863
- 10. R. F. Williams : Classification of subshifts of finite type. Ann. of Math.98 (1973), 120-153 Zbl0282.58008MR331436
- R. F. Williams : Classification of subshifts of finite type. Errata : Ann. of Math.99 (1974), 380-381. Zbl0282.58008MR391060