Quasi-compacité Cas des noyaux lipschitziens et des noyaux markoviens

H. Hennion

Publications mathématiques et informatique de Rennes (1995)

  • Issue: 2, page 1-50

How to cite

top

Hennion, H.. "Quasi-compacité Cas des noyaux lipschitziens et des noyaux markoviens." Publications mathématiques et informatique de Rennes (1995): 1-50. <http://eudml.org/doc/274803>.

@article{Hennion1995,
author = {Hennion, H.},
journal = {Publications mathématiques et informatique de Rennes},
language = {fre},
number = {2},
pages = {1-50},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Quasi-compacité Cas des noyaux lipschitziens et des noyaux markoviens},
url = {http://eudml.org/doc/274803},
year = {1995},
}

TY - JOUR
AU - Hennion, H.
TI - Quasi-compacité Cas des noyaux lipschitziens et des noyaux markoviens
JO - Publications mathématiques et informatique de Rennes
PY - 1995
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 2
SP - 1
EP - 50
LA - fre
UR - http://eudml.org/doc/274803
ER -

References

top
  1. [B.] F.E. BrowderOn the spectral theory of elliptic differential operators. Math., Ann., 142, (1961), 22-130. Zbl0104.07502MR209909
  2. [B.R.] A. Brunel et D. RevuzQuelques applications probabilistes de la quasi-compacité. Ann. Inst. Henri Poincaré, 10, 3, (1974), 301-337. Zbl0318.60064MR373008
  3. [C.I.] P. Collet et S. IsolaOn the essential spectrum of the transfer operator for expanding maps. Com. Math. Phys, 139, (1991), 551-557. Zbl0754.58032MR1121133
  4. [C.R.] J.P. Conze et A. RaugiFonctions harmoniques pour un opérateur de transition et applicationsBull. Soc. Math. France, 118, (1990), 273-310. Zbl0725.60026MR1078079
  5. [D.S.] N. Dunford et J.T. SchwartzLinear operators. Part. I. Pure and Applied Mathematics. Vol. VII. Interscience. Zbl0084.10402
  6. [G.H.] Y. Guivarc'h et J. HardyThéorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. Henri Poincaré, 24, 1, (1988), 73-98. Zbl0649.60041MR937957
  7. [G.R.] Y. Guivarc'h and A. RaugiProducts of random matrices : convergence theorems. Contemporary Mathematics, 50, (1986), 31-54. Zbl0592.60015MR841080
  8. [H.] H. HennionSur un théorème spectral et son application aux noyaux lipschitziens. Proc. Am. Math. Soc. Com, 118, 2, (1993), 627-634. Zbl0772.60049MR1129880
  9. [Her.] L. HervéEtude d'opérateurs quasi-compacts positifs. Application aux opérateurs de Perron-Frobenius. Zbl0804.47038
  10. [I.T.M.] C.T. Ionescu Tulcea et G. MarinescuThéorie ergodique pour des classes d'opérateurs non complètement continus. Ann. of Math, 52, 2, (1950), 140-147. Zbl0040.06502MR37469
  11. [Kel.] G. KellerMarkov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems. Trans. of Amer. Math. Soc., 314, 2, (1989), 433-497. Zbl0686.58027MR1005524
  12. [Kel2.] G. KellerGeneralized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. verw. Geb., 69, (1985), 461-478. Zbl0574.28014MR787608
  13. [Le] E. Le PageThéorèmes limites pour les produits de matrices aléatoires. Probability measures on groups, Proceedings Oberwolfach, Lectures Notes Series in Math., 928, (1982), 258-303. Zbl0506.60019MR669072
  14. [Nor.] M.F. NormanMarkov processes and learning models. Academic Press, (1972). Zbl0262.92003MR423546
  15. [N.] R.D. NussbaumThe radius of essential spectrum. Duke, Math., J.37, (1970), 473-478. Zbl0216.41602MR264434
  16. [Nev.] J. NeveuBases Mathématiques du calcul des Probabilités. Zbl0137.11203
  17. [Ru1.] D. RuelleThermodynamic formalism. Encyclopedia Math. Appl, vol 5, Cambridge Univ. Press, Cambridge and New York, 1978. Zbl1062.82001MR2129258
  18. [Ru2.] D. RuelleAn extension of the theory of Fredholm determinants, Inst. Hautes Etudes Sci. Publ. Math.72, (1990). Zbl0732.47003MR1087395
  19. [Sh] H.H. SchaeferTopological vector spaces. Macmillan Series in Advanced Mathematics and Theoretical Physics. Zbl0141.30503MR193469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.