On Numerical Methods for the Stokes Problem

R. Glowinski; O. Pironneau

Publications mathématiques et informatique de Rennes (1978)

  • Issue: S4, page 1-29

How to cite

top

Glowinski, R., and Pironneau, O.. "On Numerical Methods for the Stokes Problem." Publications mathématiques et informatique de Rennes (1978): 1-29. <http://eudml.org/doc/274815>.

@article{Glowinski1978,
author = {Glowinski, R., Pironneau, O.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {S4},
pages = {1-29},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {On Numerical Methods for the Stokes Problem},
url = {http://eudml.org/doc/274815},
year = {1978},
}

TY - JOUR
AU - Glowinski, R.
AU - Pironneau, O.
TI - On Numerical Methods for the Stokes Problem
JO - Publications mathématiques et informatique de Rennes
PY - 1978
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - S4
SP - 1
EP - 29
LA - eng
UR - http://eudml.org/doc/274815
ER -

References

top
  1. [1] R. Tenam, Theory and Numerical Analysis of the Navier-Stokes equations, North-Holland, Amsterdam, 1977. Zbl0383.35057MR769654
  2. [2] R.A. Adams, Sobolev spaces, Academic Press, New York, 1976. Zbl1098.46001MR450957
  3. [3] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New-York, 1972. Zbl0223.35039MR350177
  4. [4] J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. Zbl1225.35003
  5. [5] J.T. Oden, J.N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley and Sons, New-York, 1976. Zbl0336.35001MR461950
  6. [6] R. Glowinski, O. Pironneau, On a mixed finite element approximation for the Stokes problem. (II) Solution of the approximate problems (to appear). Zbl0839.76045
  7. [7] O.A. Ladyshenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 1969. Zbl0121.42701MR254401
  8. [8] I.S. Duff, N. Munksgaard, H.B. Nielsen, J.K. Reid, Direct solution of sets of linear equations whose matrix is sparse, symmetric and indefinite. Harwell report, C.S.S. Division, A.E.R.E. Harwell, January 1977. Zbl0402.65018
  9. [9] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Num. Anal., Vol. 12, (1975), pp. 617-629. Zbl0319.65025MR383715
  10. [10] O. Widlund, A Lanczos method for a class of non-symmetric systems of linear equations (to appear). Zbl0398.65030MR483345
  11. [11] M. Crouzeix, Etude d'une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux équations de Navier-Stokes stationnaires, in Approximation et méthodes itératives de résolution d'inéquations variationnelles et de problèmes non linéaires, Cahier de l'IRIA N° 12, May 1974, pp. 139-244. Zbl0924.76070MR483519
  12. [12] M. Fortin, R. Glowinski, Augmented Lagragian in Quadratic Programming, Ch. 1 of Numerical Solution of Boundary Value Problems by Augmented Lagragians, M. Fortin, R. Glowinski Ed., (to appear). 
  13. [13] M. Fortin, F. Thomasset, Application to Stokes and Navier-Stokes equations, Ch. 2 of Numerical Solution of Boundary Value Problems by Augmented Lagrangian, M. Fortin, R. Glowinski Ed., (to appear). Zbl0395.76023MR603444
  14. [14] J.W. Daniel, The approximate minimization of functionals. Prentice Hall, Englewood Cliffs, 1970. Zbl0223.65014MR272398
  15. [15] M.R. Hestenes, Multiplier and Gradient Methods, J.O.T.A., 4, N° 5, (1969), pp. 303-320. Zbl0174.20705MR271809
  16. [16] M.J.D. Powell, A method for non linear optimization in minimization problems, in Optimization, R. Fletcher Ed., Acad. Press, 1969. 
  17. [17] R. Glowinski, J.L. Lions, R. Tremolieres, Analyse Numérique des Inéquations Variationnelles, Vol. 1, Dunod-Bordas, Paris, 1976. Zbl0358.65091
  18. [18] R. Glowinski, O. Pironneau, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Convergence des solutions approchées. C.R.A.S.Paris, T.286A, 1978, pp. 181-183. Zbl0377.65056MR468237
  19. [19] R. Glowinski, 0. Pironneau, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Résolution des problèmes approchés. C.R.A.S.Paris, T. 286 A, (1978), pp. 225-228. Zbl0377.65057
  20. [20] R. Glowinski, O. Pironneau, Numerical methods for the first biharmonicequation and for the two-dimensional Stokes problem. Comp. Science Dpt., Report STAN-CS-77-615, Stanford University, 1977 and SIAM Review (toappear). Zbl0427.65073
  21. [21] R. Glowinski, O. Pironneau, On a mixed finite element approximation for the Stokes problem. (I) Convergence of the approximate solutions (to appear). Zbl0423.65059MR553350
  22. [22] M.O. Bristeau, R. Glowinski, O. Pironneau, J. Periaux, P. Perier, G. Poirier, Application of Optimal Control Methods to the Calculation of Transonic Flows and Incompressible Viscous Flows, in Numerical Methods in Applied Fluid Dynamics, B. Hunt Ed., Academic Press, London (to appear). Zbl0449.76002
  23. [23] C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comp. and Fluids, 1, (1973), pp. 73-100. Zbl0328.76020MR339677
  24. [24] M. Bercovier, O. Pironneau, Estimations d'erreurs pour la résolution du problème de Stokes en éléments finis conformes de Lagrange, C.R.A.S.Paris, T. 285 A, (1977), pp. 1085-1087. Zbl0377.65055MR502026
  25. [25] J.M. Thomas, Sur l'Analyse Numérique des méthodes d'éléments finis hybrides et mixtes, Thesis, Université Paris VI, 1977. 
  26. [26] M. Crouzeix, P.A. Raviart, Conforming and non conforming finite element methods for solving the sationary Stokes equations. R.A.I.R.O., R-3, (1973), pp. 33-76. Zbl0302.65087MR343661
  27. [27] P.A. Raviart, Finite element methods and Navier-Stokes equations. Proceedings of the Third Iria Symposium on Numerical Methods in Engineering and Applied Sciences (to appear). Zbl0403.76039MR540128
  28. [28] O.C. Zienkiewicz, The Finite Element Method in Engineering Sciences, Mc Graw Hill, 1978. Zbl0237.73071MR315970
  29. [29] P. Le Tallec, Thesis (to appear). 
  30. [30] O. Axelsson, A class of iterative methods for finite element equations, Comp. Methods Applied Mech. Eng., Vol. 9, (1976), N° 2, pp. 123-138. Zbl0334.65028MR433836
  31. [31] M. Bercovier, Régularisation duale des problèmes variationnels mixtes et extension à quelques problèmes non linéaires, Thesis, Université de Rouen, 1976. 
  32. [32] J.H. Argyris, P.C. Dunne, Improved Displacement Finite Element for Incompressible Materials, Chapter 12 of this book. Zbl0408.73066
  33. [33] C. Johnson, A mixed finite element method for the Navier-Stokes equations, Research Report 77-IAR, Department of Computer Sciences, Chalmers University of Technology and the University of Goteborg, 1977. Zbl0399.76035MR519017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.