Kinetic Approach to Systems of Conservation Laws

B. Perthame

Publications mathématiques et informatique de Rennes (1992)

  • Issue: 1, page 192-204

How to cite

top

Perthame, B.. "Kinetic Approach to Systems of Conservation Laws." Publications mathématiques et informatique de Rennes (1992): 192-204. <http://eudml.org/doc/274888>.

@article{Perthame1992,
author = {Perthame, B.},
journal = {Publications mathématiques et informatique de Rennes},
language = {eng},
number = {1},
pages = {192-204},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Kinetic Approach to Systems of Conservation Laws},
url = {http://eudml.org/doc/274888},
year = {1992},
}

TY - JOUR
AU - Perthame, B.
TI - Kinetic Approach to Systems of Conservation Laws
JO - Publications mathématiques et informatique de Rennes
PY - 1992
PB - Département de Mathématiques et Informatique, Université de Rennes
IS - 1
SP - 192
EP - 204
LA - eng
UR - http://eudml.org/doc/274888
ER -

References

top
  1. [Ba] C. Bardos. Introduction aux problèmes hyperboliques. In CIME Lesson, LN 1047, Springer Verlag, Berlin. H.B. Da Veiga Editor. Zbl0549.35078
  2. [Br] Y. Brenier, Résolution d'équations d'évolution quasilinéaires. J. Diff. Eq.50(3), (1986), 375-390. Zbl0549.35055MR723577
  3. [Ce] C. Cercignani. The Boltzmann Equation and its applications. Applied Math. Sc.67, Springer Verlag, Berlin (1988). Zbl0646.76001MR1313028
  4. [Ch] C.Q. Chen. The compensated compactness method and the system of isentropic gas dynamics. Preprint MSRI - 00527-91, Mathematical Sciences Research Institute, Berkeley (1990). 
  5. [DP] R.J. Di Perna. Convergence of approximate solutions to conservation laws. Arch. Rat. Mech. Anal.82 (1983) pp. 27-70. Zbl0519.35054MR684413
  6. [DLM] R. Di Perna, P.L. Lions, Y. Meyer, LP regularity of velocity averages. A Paraître dans Ann. IHP Anal. Non Lin., 1991. Zbl0763.35014MR1127927
  7. [GLPS] F. Golse, P.L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal.76(1), (1988), 11°-125. Zbl0652.47031MR923047
  8. [K] S. Kruzkov, First order quasi-linear equations with several space variables. Math. USSR Sb.10(1970), 217-273. 
  9. [L] P.D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF conference n° 11, SIAM, Philadelfia (1973). Zbl0268.35062MR350216
  10. [LP] P.L. Lions, B. Perthame. Moments, averaging and dispersion lemmas. C.R. Ac. Sc.Paris (1992) to appear. Zbl0761.35085MR1166050
  11. [LPT1] P.L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of scalar conservation laws. Note C.R.A.S. t. Série 1 (1991). Zbl0820.35094
  12. [LPT2] P.L. Lions. B. Perthame, E. Tadmor. Kinetic formulation of isentropic gas dynamics in preparation. Zbl0799.35151
  13. [P] B. Perthame, Higher moments for kinetic equations ; Applications to Vlasov-Poisson and Fokker-Planck Equations. Math. Methods in the Appl. Sc.13(1990), 441-452. Zbl0717.35017MR1078593
  14. [PT] B. Perthame, E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws. A paraître dans Comm. in Math. Phys. Zbl0729.76070
  15. [S] J. Smoller, Shock waves and reaction diffusion equations. Springer-VerlagNew York, Heidelberg-Berlin, (1982). Zbl0807.35002MR1301779
  16. [T] L. Tartar, In Research notes in Mathematics, 39, Henriot-Watt Symp. Vol. 4Pitman Press Boston, London (1975), 136-211. Zbl0437.35004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.