On the Dimension of Some Modular Irreducible Representations of the Symmetric Group

Olivier Mathieu

Recherche Coopérative sur Programme n°25 (1995)

  • Volume: 47, page 183-191

How to cite

top

Mathieu, Olivier. "On the Dimension of Some Modular Irreducible Representations of the Symmetric Group." Recherche Coopérative sur Programme n°25 47 (1995): 183-191. <http://eudml.org/doc/274915>.

@article{Mathieu1995,
author = {Mathieu, Olivier},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {183-191},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {On the Dimension of Some Modular Irreducible Representations of the Symmetric Group},
url = {http://eudml.org/doc/274915},
volume = {47},
year = {1995},
}

TY - JOUR
AU - Mathieu, Olivier
TI - On the Dimension of Some Modular Irreducible Representations of the Symmetric Group
JO - Recherche Coopérative sur Programme n°25
PY - 1995
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 47
SP - 183
EP - 191
LA - eng
UR - http://eudml.org/doc/274915
ER -

References

top
  1. 1. H. H. Andersen: The strong linkage principle. J. Reine Angew Math.315 (1980) 53-55. Zbl0439.20026MR564523
  2. 2. D. Benson, Modular representations theory: new trends and methods, L. N. Math.1081, Springer Verlag. Zbl0564.20004MR2267317
  3. 3. R. Carter and G. Lusztig, On the general linear and symmetric groups, Math. Z., 136 (1974) 193-242. Zbl0298.20009MR354887
  4. 4. K. Erdmann, Symmetric groups and quasi-hereditary algebras, Representations of algebras and related topics, ed. V. Dlab and L. L. Scott, Kluwer, Dordrecht1994. Zbl0831.20013MR1308984
  5. 5. S. Donkin: Rational representations of algebraic groups. Springer Verlag, Lect. Notes in Math.1140 (1985). Zbl0586.20017MR804233
  6. 6. S. Donkin, On tilting modules for algebraic groups, Math. Z.212 (1993) 39-60. Zbl0798.20035MR1200163
  7. 7. G. Georgiev and O. Mathieu: Categorie de fusion pour les groupes de Chevalley, Comptes Rendus Acad. Sc. Paris, 315 (1992) 659-662. Zbl0801.20014MR1183798
  8. 8. G. Georgiev and O. Mathieu: Fusion rings for modular representations of Chevalley groups, Proceedings of "Math. Aspect of CTFT and Quantum Groups", Mount Holliock, June 1992 (ed. Flato, Lepowsky, Reshetikhin, Sally, Zuckerman). Compt. Math.175 (1994) 89-100. Zbl0830.20064MR1302014
  9. 9. J. Jantzen: Representations of algebraic groups, Academic Press, Orlando (1987). Zbl0654.20039MR899071
  10. 10. A. S. Kleshchev: Branching rules for modular representations of symmetric groups III: some corollaries and a problem of Mullineux. Zbl0854.20014
  11. 11. O. Mathieu: Filtrations of G-modules, Ann. Ecole Norm. Sup.23 (1990) 625-644. Zbl0748.20026MR1072820
  12. 12. C. M. Ringel: The category of good modules over a quasi- hereditary algebra has an almost split sequence, Preprint. Zbl1021.16006MR1206958
  13. 13. E. Verlinde: Fusion rules and modular transformations in 2D conformai field theory, Nucl. Phys. B 300 (1988) 360-375. Zbl1180.81120MR954762
  14. 14. Wang Jian-Pian: Sheaf cohomology on G/B and tensor products of Weyl modules. J. of Algebra77 (1982) 162-185. Zbl0493.20023MR665171
  15. 15. H. Wenzl, Hecke algebras of type An and subfactors, Inv. Math.92 (1988) 349-383. Zbl0663.46055MR936086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.