Vector Bundles on Riemann Surfaces and Conformal Field Theory
Recherche Coopérative sur Programme n°25 (1994)
- Volume: 46, page 127-147
Access Full Article
topHow to cite
topBeauville, Arnaud. "Vector Bundles on Riemann Surfaces and Conformal Field Theory." Recherche Coopérative sur Programme n°25 46 (1994): 127-147. <http://eudml.org/doc/274916>.
@article{Beauville1994,
author = {Beauville, Arnaud},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {127-147},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Vector Bundles on Riemann Surfaces and Conformal Field Theory},
url = {http://eudml.org/doc/274916},
volume = {46},
year = {1994},
}
TY - JOUR
AU - Beauville, Arnaud
TI - Vector Bundles on Riemann Surfaces and Conformal Field Theory
JO - Recherche Coopérative sur Programme n°25
PY - 1994
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 46
SP - 127
EP - 147
LA - eng
UR - http://eudml.org/doc/274916
ER -
References
top- [A] M. Atiyah : The Geometry and Physics of Knots. Cambridge University Press (1990). Zbl0729.57002
- [A-C-G-H] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris : Geometry of Algebraic Curves I. Springer-Verlag (1985). Zbl0559.14017
- [B1] A. Beauville : Fibres de rang 2 sur les courbes, fibré déterminant et fonctions thêta. Bull. Soc. math. France116, 431-448 (1988). Zbl0691.14016MR1005388
- [B2] A. Beauville : Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta II. Bull. Soc. math. France119, 259-291 (1991). Zbl0756.14017MR1125667
- [B3] A. Beauville : Conformal blocks, Fusion rings and the Verlinde formula. Proc. of the Conference "Hirzebruch65", to appear. Zbl0848.17024
- [B-L] A. Beauville, Y . Laszlo : Conformal blocks and generalized theta functions. Commun. Math. Phys.164, 385-419 (1994). Zbl0815.14015MR1289330
- [B-La] Ch. Birkenhake, H. Lange : Complex Abelian Varieties. Springer-Verlag (1992). Zbl1056.14063MR1217487
- [B-K-Z] A. Belavin, A. Polyakov, A. Zamolodchikov : Infinite Conformal symmetry in two-dimensional Quantum Field Theory. Nucl. Phys. B 241, 333-380 (1984). Zbl0661.17013MR757857
- [C] M. Cornalba : Complex tori and Jacobians. Complex Analysis and its applications, vol. II, 39-100 ; Intern. Atomic Energy, Vienna (1976). Zbl0349.14023MR485894
- [D-N] J. M. Drezet, M. S. Narasimhan : Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. math.97, 53-94 (1989). Zbl0689.14012MR999313
- [F] G. Faltings : A proof for the Verlinde formula. J. Algebraic Geometry3, 347-374 (1994). Zbl0809.14009MR1257326
- [F-S] D. Friedan, S. Shenker : The analytic Geometry of two-dimensional Conformal Field Theory. Nucl. Phys. B 281, 509-545 (1987). MR869564
- [K] V. Kac : Infinite dimensional Lie algebras (3rd edition). Cambridge University Press (1990). Zbl0925.17021MR1104219
- [M-S1] G. Moore, N. Seiberg : Classical and Quantum Conformal Field Theory. Commun. Math. Phys.123, 177-254 (1989). Zbl0694.53074MR1002038
- [M-S2] G. Moore, N. Seiberg : Polynomial Equations for Rational Conformal Field Theories. Phys. Let. B 212, 451-460 (1988). MR962600
- [S] G. Segal : Two dimensional Conformal Field Theory and modular functors. Proc. Intern. Cong. Math. Phys. Swansea22-37, A. Hilger (1989). MR1033753
- [T] M. Thaddeus : Stable pairs, linear systems and the Verlinde formula. Inventiones math.117, 317-353 (1994). Zbl0882.14003MR1273268
- [T-U-Y] A. Tsuchiya, K. Ueno, Y. Yamada : Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Studies in Pure Math.19, 459-566 (1989). Zbl0696.17010MR1048605
- [V] E. Verlinde : Fusion rules and modular transformations in 2d conformal field theory. Nuclear Physics B300360-376 (1988). Zbl1180.81120MR954762
- [W] A. Weil : Généralisation des fonctions abéliennes. J. de Math. P. et App.17 ( 9ème sér.), 47-87 (1938). Zbl0018.06302JFM64.0361.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.