Space of Second Order Linear Differential Operators As a Module Over the Lie Algebra of Vector Fields
Recherche Coopérative sur Programme n°25 (1995)
- Volume: 47, page 193-213
Access Full Article
topHow to cite
topDuval, C., and Ovsienko, V. Yu.. "Space of Second Order Linear Differential Operators As a Module Over the Lie Algebra of Vector Fields." Recherche Coopérative sur Programme n°25 47 (1995): 193-213. <http://eudml.org/doc/274923>.
@article{Duval1995,
author = {Duval, C., Ovsienko, V. Yu.},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {193-213},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Space of Second Order Linear Differential Operators As a Module Over the Lie Algebra of Vector Fields},
url = {http://eudml.org/doc/274923},
volume = {47},
year = {1995},
}
TY - JOUR
AU - Duval, C.
AU - Ovsienko, V. Yu.
TI - Space of Second Order Linear Differential Operators As a Module Over the Lie Algebra of Vector Fields
JO - Recherche Coopérative sur Programme n°25
PY - 1995
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 47
SP - 193
EP - 213
LA - eng
UR - http://eudml.org/doc/274923
ER -
References
top- [1] R. J. Blattner, Quantization and representation theory, in "Proc. Sympos. Pure Math.," Vol. 26, AMS, Providence, 145-165, 1974. Zbl0296.53031MR341529
- [2] E. Cartan, "Leçons sur la théorie des espaces à connexion projective." Gauthier-Villars, Paris, 1937. Zbl0016.07603JFM63.0689.05
- [3] C. Duval, J. Elhadad And G. M. Tuynman,The BRS Method and Geometric Quantization: Some Examples, Comm. Math. Phys.126 (1990), 535-557. Zbl0699.58040MR1032872
- [4] B. L. Feigin, D. B. Fuks, Homology of the Lie algebra of vector fields on the line, Func. Anal Appl.14 (1980), 201-212. Zbl0487.57011MR583800
- [5] D. B. Fuks, "Cohomology of infinite-dimensional Lie algebras," Consultants Bureau, New York, 1987. Zbl0667.17005MR874337
- [6] A. A. Kirillov, Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments, in "Lecture Notes in Math." Vol. 970, Springer-Verlag, 1982. Zbl0498.22017MR699803
- [7] A. A. Kirlllov, Geometric Quantization, in "Encyclopedia of Math. Sci.," Vol. 4, Springer-Verlag, 1990. Zbl0780.58024
- [8] A. A. Kirlllov, Invariant Differential Operators over Geometric Quantities, in "Modern Problems in Mathematics," VINITI (in Russian), Vol. 16, 1980.
- [9] B. Kostant, Quantization and Unitary Representations, in "Lecture Notes in Math.," Springer-Verlag, Vol. 170, 1970. Zbl0223.53028MR294568
- [10] B. Kostant, Symplectic Spinors, in "Symposia Math.," Vol. 14, London, Acad. Press, 1974. Zbl0321.58015MR400304
- [11] P.B.A. Lecomte, P. Mathonet, E. Tusset, Comparison of some modules of the Lie algebra of vector fields, Preprint Univ. of Liège, 1995. 212 Zbl0892.58002
- [12] O. D. Ovsienko, V. Yu. Ovsienko, Lie derivative of order n on a line. Tensor meaning of the Gelfand-Dickey bracket, in "Adv. in Soviet Math." Vol. 2, 1991. Zbl0753.58008MR1104942
- [13] J. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. AMS250 (1979), 167-180. Zbl0422.58019MR530048
- [14] A. N. Rudakov, Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR Izvestija8 (1974), 836-866. Zbl0322.17004MR360732
- [15] J. Sniatycki, "Geometric quantization and quantum mechanics," Springer-Verlag, Berlin, 1980. Zbl0429.58007MR554085
- [16] J.-M. Souriau, "Structure des systèmes dynamiques," Paris, Dunod, © 1969 Zbl0186.58001
- [16] J.-M. Souriau, "Structure des systèmes dynamiques," Paris, Dunod, ©1970. Zbl0186.58001MR260238
- [17] N. M. J. Woodhouse, "Geometric Quantization," Clarendon Press, Oxford, 1992. Zbl0747.58004MR1183739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.