Non-Local Extensions of the Conformal Algebra : Matrix W-Algebras, Matrix KdV-Hierarchies and Non-Abelian Toda Theories

Adel Bilal

Recherche Coopérative sur Programme n°25 (1995)

  • Volume: 47, page 93-125

How to cite

top

Bilal, Adel. "Non-Local Extensions of the Conformal Algebra : Matrix W-Algebras, Matrix KdV-Hierarchies and Non-Abelian Toda Theories." Recherche Coopérative sur Programme n°25 47 (1995): 93-125. <http://eudml.org/doc/274933>.

@article{Bilal1995,
author = {Bilal, Adel},
journal = {Recherche Coopérative sur Programme n°25},
language = {eng},
pages = {93-125},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Non-Local Extensions of the Conformal Algebra : Matrix W-Algebras, Matrix KdV-Hierarchies and Non-Abelian Toda Theories},
url = {http://eudml.org/doc/274933},
volume = {47},
year = {1995},
}

TY - JOUR
AU - Bilal, Adel
TI - Non-Local Extensions of the Conformal Algebra : Matrix W-Algebras, Matrix KdV-Hierarchies and Non-Abelian Toda Theories
JO - Recherche Coopérative sur Programme n°25
PY - 1995
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 47
SP - 93
EP - 125
LA - eng
UR - http://eudml.org/doc/274933
ER -

References

top
  1. 1. A. N. Leznov and M. V. Saveliev, Two-dimensional exactly and completely integrable dynamical systems, Comm. Math. Phys.89 (1983) 59. Zbl0536.35068MR707772
  2. 2. J.-L. Gervais and M. V. Saveliev, Black holes from non-abelian Toda theories, Phys. Lett. B286 (1992) 271. MR1175139
  3. 3. A. Bilal, Non-abelian Toda theory: a completely integrable model for strings on a black hole background, Nucl. Phys. B422 (1994) 258. Zbl0990.81695MR1289621
  4. 4. A. Bilal and J.-L. Gervais, Systematic approach to conformai systems with extended Virasoro symmetries, Phys. Lett. B206 (1988) 412; MR944263
  5. A. Bilal and J.-L. GervaisSystematic construction of c = conformal systems from classical Toda field theories, Nucl. Phys. B314 (1989) 646; MR984580
  6. A. Bilal and J.-L. GervaisSystematic construction of conformal theories with higher-spin Virasoro symmetries, Nucl. Phys. B318 (1989) 579. MR999521
  7. 5. A. Bilal, Multi-component KdV hierarchy, V-algebra and non-abelian Toda theory, Lett. Math. Phys.32 (1994) 103. Zbl0807.35123MR1296380
  8. 6. I. Bakas, Higher spin fields and the Gelfand-Dikii algebras, Commun. Math. Phys.123 (1989) 627. Zbl0689.35100MR1006297
  9. 7. I. M. Gel'fand and L. A. Dikii, Fractional powers of operators and hamiltonian systems, Funct. Anal. Applic.10 (1976) 259; Zbl0356.35072MR433508
  10. I. M. Gel'fand and L. A. DikiiThe resolvent and hamiltonian systems, Funct. Anal. Applic.11 (1977) 93. Zbl0412.58018MR442984
  11. 8. M. Adler, On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent, math.50 (1979) 219. Zbl0393.35058MR520927
  12. 9. D. R. Lebedev and Yu. I. Manin, Gelfand-Dikii Hamiltonian operator and the coadjoint representation of the Volterra group, Funct. Anal. Applic.13 (1979) 268. Zbl0455.58012
  13. 10. I. M. Gel'fand and L. A. Dikii, A family of Hamiltonian structures connected with integrable non-linear differential equations, Inst. Appl. Math. Acad. Sci. USSR preprint n° 136, 1978 (in Russian). 
  14. 11. B. A. Kupershmidt and G. Wilson, Modifying Lax equations and the second Hamiltonian structure, Invent. Math.62 (1981) 403. Zbl0464.35024MR604836
  15. 12. L. A. Dikii, A short proof of a Kupershmidt-Wilson theorem, Commun. Math. Phys.87 (1982) 127. Zbl0523.35091MR680652
  16. 13. I. M. Gel'fand and L. A. Dikii, Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteveg-de Vries equations, Russ. Math. Surv.30 (1975) 77. Zbl0334.58007MR508337
  17. 14. E. Olmedilla, L. Martinez Alonso and F. Guil, Infinite-dimensional Hamiltonian systems associated with matrix Schrödinger operators, Nuovo Cim.61B (1981) 49. MR619392
  18. 15. F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform associated with the multichannel Schrödinger problem, and properties of their solution, Lett. Nuovo Cim.15 (1976) 65; Zbl0435.35070MR426642
  19. 16. A. Bilal, Non-local matrix generalizations of W-algebras, Princeton University preprint PUPT-1452 (March 1994), hep-th@xxx/9403197, Comm. Math. Phys. in press. Zbl0846.17026MR1331694
  20. 17. P. Mathieu, Extended classical conformai algebras and the second Hamiltonian structure of Lax equations, Phys. Lett. B208 (1988) 101. MR952528
  21. 18. P. Di Francesco, C. Itzykson and J.-B. Zuber, Classical W-algebras, Commun. Math. Phys.140 (1991) 543. Zbl0752.17026MR1130697
  22. 19. A. B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformai field theory, Theor. Math. Phys.65 (1985) 1205. MR829902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.