Fermat’s method of quadrature
Jaume Paradís; Josep Pla; Pelegrí Viader
Revue d'histoire des mathématiques (2008)
- Volume: 14, Issue: 1, page 5-51
- ISSN: 1262-022X
Access Full Article
topAbstract
topHow to cite
topParadís, Jaume, Pla, Josep, and Viader, Pelegrí. "Fermat’s method of quadrature." Revue d'histoire des mathématiques 14.1 (2008): 5-51. <http://eudml.org/doc/274941>.
@article{Paradís2008,
abstract = {The Treatise on Quadratureof Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, $\int x^\{+m/n\}dx$, or under a higher hyperbola, $\int x^\{-m/n\}dx$—with the appropriate limits of integration in each case—has a second part which was mostly unnoticed by Fermat’s contemporaries. This second part of theTreatise is obscure and difficult to read. In it Fermat reduced the quadrature of a great number of algebraic curves in implicit form to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formula of integration by parts, provide Fermat with the necessary tools to square—quite easily—as well-known curves as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.},
author = {Paradís, Jaume, Pla, Josep, Viader, Pelegrí},
journal = {Revue d'histoire des mathématiques},
keywords = {history of mathematics; quadratures; integration methods},
language = {eng},
number = {1},
pages = {5-51},
publisher = {Société mathématique de France},
title = {Fermat’s method of quadrature},
url = {http://eudml.org/doc/274941},
volume = {14},
year = {2008},
}
TY - JOUR
AU - Paradís, Jaume
AU - Pla, Josep
AU - Viader, Pelegrí
TI - Fermat’s method of quadrature
JO - Revue d'histoire des mathématiques
PY - 2008
PB - Société mathématique de France
VL - 14
IS - 1
SP - 5
EP - 51
AB - The Treatise on Quadratureof Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, $\int x^{+m/n}dx$, or under a higher hyperbola, $\int x^{-m/n}dx$—with the appropriate limits of integration in each case—has a second part which was mostly unnoticed by Fermat’s contemporaries. This second part of theTreatise is obscure and difficult to read. In it Fermat reduced the quadrature of a great number of algebraic curves in implicit form to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formula of integration by parts, provide Fermat with the necessary tools to square—quite easily—as well-known curves as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.
LA - eng
KW - history of mathematics; quadratures; integration methods
UR - http://eudml.org/doc/274941
ER -
References
top- [Andersen 1985] Andersen ( Kirsti) – Cavalieri’s method of indivisibles, Arch. Hist. Exact Sci., 31 (1985), p. 291–367; Chapter I. Zbl0563.01005
- [Aubry 1909] Aubry ( A.) – Essai sur l’histoire de la géométrie des courbes, Annaes Scientificos da Academia Polytechnica do Porto, 4 (1909), p. 65–112. JFM40.0067.02
- [Aubry 1912] Aubry ( A.) – Méthode de Fermat pour la quadrature des courbes, 1912; in [Tannery & Henry 1891–1912, “Notes mathématiques et compléments", vol. 4, pp. 228–230. Note xxvi].
- [Baron 1987] Baron ( Margaret E.) – The Origins of the Infinitesimal Calculus, New York: Dover Publications Inc., 1987. Zbl0642.01001
- [Bernoulli 1692] Bernoulli ( Johann) – Lectiones mathematicæ, de methodo integralium, aliisque, 1692; in [Bernoulli 1742], vol. 3].
- [Bernoulli 1742] Bernoulli ( Johann) – Opera Omnia, 4 vols., Lausanne & Genève: Michel Bousquet, 1742.
- [Bos 1989] Bos ( Henk J. M.) – Recognition and wonder: Huygens, tractional motion and some thoughts on the history of mathematics, Tractrix, 1 (1989), p. 3–20.
- [Bos 1993] Bos ( Henk J. M.) – Lectures in the History of Mathematics, History of Mathematics, vol.7, Providence, RI: Amer. Math. Soc., 1993. Zbl0788.01004
- [Bos 1987] Bos ( Henk J. M.) – The concept of construction and the representation of curves in seventeenth-century mathematics, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc., 1987, p. 1629–1641. Zbl0664.14001
- [Bos et al. 1980 Bos, Bunn, Dauben, Grattan-Guinness, Hawkins & Pedersen] Bos ( Henk J. M.), Bunn ( R.), Dauben ( Joseph W.), Grattan-Guinness ( I.), Hawkins ( Thomas W.) & Pedersen ( Kirsti Møller) – From the calculus to set theory, 1630–1910, in Grattan-Guiness (Ivor), ed., From Calculus to Set Theory 1630-1910. An Introductory History, London: Gerald Duckworth & Co. Ltd., 1980.
- [Boyer 1945] Boyer ( Carl B.) – Fermat’s integration of , Nat. Math. Mag., 20 (1945), p. 29–32. Zbl0060.01005
- [Bullard 1916] Bullard ( J. A.) – Problem 410, Amer. Math. Monthly, 23 (1916), p. 210.
- [Duhamel 1864] Duhamel ( Jean Marie Constant) – Mémoire sur la méthode de maxima et minima de Fermat et sur les méthodes des tangentes de Fermat et Descartes, Mémoires de l’Académie des Sciences de l’Institut Impérial de France, 32 (1864), p. 269–330.
- [Edwards 1979] Edwards ( Charles H., Jr) – The Historical Development of the Calculus, New York: Springer, 1979. Zbl0803.01001
- [Fermat c. 1659] Fermat ( Pierre de) – De æquationum localium transmutatione et emendatione ad multimodam curvilineorum inter se vel cum rectilineis comparationem, cui annectitur proportionis geometricæ in quadrandis infinitis parabolis et hyperbolis usus, c. 1659; in [Tannery & Henry 1891–1912, vol. 1, pp. 255–285].
- [Fermat 1662] Fermat ( Pierre de) – De cissoide fragmentum, 1662; in [Tannery & Henry 1891–1912, vol. 1, pp. 285–288].
- [Fermat 1679] Fermat ( Pierre de) – Varia opera mathematica D. Petri de Fermat Senatoris Tolosani. Accesserunt selectæ quædam ejusdem Epistolæ, vel ad ipsum à plerisque doctissimis viris Gallicè, Latinè, vel Italicè, de rebus ad Mathematicas disciplinas aut Physicam pertinentibus scriptæ., Toulouse: Joannis Pech, 1679; repr. Brussels, 1969. Zbl0191.00401
- [Flad 1963] Flad ( Jean-Paul) – Les trois premières machines à calculer. Schickard (1623), Pascal (1642), Leibniz (1673), Conférence donnée au Palais de la Découverte le 8 Juin, Université de Paris, 1963. Zbl0115.24202
- [Freguglia 1999] Freguglia ( Paolo) – On the principle of dimensional homogeneity between the 16th and the 17th century, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2(1) (1999), p. 143–160. Zbl0923.01015
- [Giusti 1980] Giusti ( Enrico) – Bonaventura Cavalieri and the theory of the indivisibles, Preface to the facsimile of Exercitationes geometricæ sex by Bonaventura Cavalieri, Bologna: Cremonese, 1980. Zbl1099.01517
- [Gray & Malakyan 1999] Gray ( S. I. B.) & Malakyan ( Tagui) – The Witch of Agnesi. A lasting contribution from the first surviving mathematical work written by a woman: a commemorative on the 200th anniversary of her death, College Math. J., 30 (1999), p. 258–268. Zbl0995.01507
- [Huygens 1905] Huygens ( Christiaan) – Œuvres complètes de Christiaan Huygens, vol. X, Correspondance 1691-1695, ed. by Bosscha, J., La Haye: M. Nijhoff, 1905. JFM47.0004.02
- [Itard & Dedron 1959] Itard ( Jean) & Dedron ( Pierre) – Mathématiques et mathématiciens, Paris: Magnard, 1959; English translation in 2 vol. by J. V. Field, Open University, Set Book, 1973, 1975.
- [Katz 1993] Katz ( Victor J.) – A History of Mathematics, New York: HarperCollins College Publishers, 1993. Zbl1065.01501
- [Mahoney 1994] Mahoney ( Michael S.) – The Mathematical Career of Pierre de Fermat, 1601–1665, Princeton: Princeton University Press, 2nd edition, 1994; 1st ed. 1973. Zbl0820.01017
- [Mulcrone 1957] Mulcrone ( T. F.) – The names of the curve of Agnesi, Amer. Math. Monthly, 64 (1957), p. 359–361.
- [Paradís et al. 2004 Paradís, Pla & Viader] Paradís ( Jaume), Pla ( Josep) & Viader ( Pelegrí) – Fermat and the quadrature of the folium of Descartes, Amer. Math. Monthly, 111 (2004), p. 216–229. Zbl1080.26500
- [Pascal 1659] Pascal ( Blaise) – Lettres de A. Dettonville contenant quelques-unes de ses inventions de Géométrie, Paris: Chez Guillaume Desprez, 1659.
- [Rosenfeld 1928] Rosenfeld ( Léon) – René-François de Sluse et le problème des tangentes, Isis, 10 (1928), p. 416–434. Zbl54.0028.04JFM54.0028.04
- [Stillwell 1989] Stillwell ( John) – Mathematics and its History, Undergraduate Texts in Mathematics, New York: Springer, 1989. Zbl0685.01002
- [Struik 1986] Struik ( Dirk J.), ed. – A Source Book in Mathematics, 1200–1800, Princeton Paperbacks, Princeton, NJ: Princeton University Press, 1986; Reprint of the 1969 edition. Zbl0657.01001
- [Tannery & Henry 1891–1912] Tannery ( Paul) & Henry ( Charles), eds. – Œuvres de Pierre Fermat, 4 vols. plus suppl., Paris: Gauthier–Villars, 1891–1912. JFM23.0013.02
- [Truesdell 1989] Truesdell ( Clifford A.) – Maria Gaetana Agnesi, Arch. Hist. Exact Sci., 40 (1989), p. 113–142. Zbl0761.01013
- [Viète 1646] Viète ( François) – In artem analyticem isagoge, Leyden: Elzevier Press, 1646.
- [Walker 1932] Walker ( Evelyn) – A Study of the Traité des Indivisibles, New York: Teachers College, 1932. JFM58.0989.06
- [Whiteside 1961] Whiteside ( Derek Thomas) – Patterns of mathematical thought in the later seventeeth century, Arch. History Exact Sci., 1 (1961), p. 179–388. Zbl0099.24401
- [Zeuthen 1895] Zeuthen ( Hieronymus G.) – Notes sur l’histoire des mathématiques, (suite) IV: Sur les quadratures avant le calcul intégral, et en particulier sur celles de Fermat, Oversigt over det Kongelige Danske Videnskabernes Selskabs. Forhandlinger, 1895, p. 37–80; part 4 of a paper started in 1893 in the same Bulletin. JFM26.0054.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.