Matrix Integrals, Toda Symmetries, Virasoro Constraints and Orthogonal Polynomials

M. Adler; P. van Moerbeke

Recherche Coopérative sur Programme n°25 (1995)

  • Volume: 47, Issue: 3, page 215-262

How to cite

top

Adler, M., and van Moerbeke, P.. "Matrix Integrals, Toda Symmetries, Virasoro Constraints and Orthogonal Polynomials." Recherche Coopérative sur Programme n°25 47.3 (1995): 215-262. <http://eudml.org/doc/274951>.

@article{Adler1995,
author = {Adler, M., van Moerbeke, P.},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {Virasoro algebra; Toda lattice; Virasoro constraints; semi-infinite matrices; orthogonal polynomials; Lie algebra of symmetries},
language = {eng},
number = {3},
pages = {215-262},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Matrix Integrals, Toda Symmetries, Virasoro Constraints and Orthogonal Polynomials},
url = {http://eudml.org/doc/274951},
volume = {47},
year = {1995},
}

TY - JOUR
AU - Adler, M.
AU - van Moerbeke, P.
TI - Matrix Integrals, Toda Symmetries, Virasoro Constraints and Orthogonal Polynomials
JO - Recherche Coopérative sur Programme n°25
PY - 1995
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 47
IS - 3
SP - 215
EP - 262
LA - eng
KW - Virasoro algebra; Toda lattice; Virasoro constraints; semi-infinite matrices; orthogonal polynomials; Lie algebra of symmetries
UR - http://eudml.org/doc/274951
ER -

References

top
  1. [AGL] Alvarez-Gaumé, L., Gomez, C., Lacki, J. : Integrability in random matrix models, Phys. Letters B, vol 253, (1,2), 56-62. MR1089584
  2. [A-S-V] Adler, M., Shiota, T., van Moerbeke, P. : From the w -algebra to its central extension: a τ -function approach, Phys. Letters A, 1994 Zbl0925.58031MR1299512
  3. Adler, M., Shiota, T., van Moerbeke, P. and A Lax pair representation for the Vertex operator and the central extension, Comm. Math. Phys.1995. Zbl0839.35116MR1346172
  4. [A-vM2] Adler, M., van Moerbeke, P. : A matrix integral solution to two-dimensional Wp-Gravity, Comm. Math. Phys.147, 25-56 (1992). Zbl0756.35074MR1171759
  5. [A-S] Al-Salam, W. A., Chihara, T. S.: Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal.3, pp 65-70 (1972). Zbl0238.33010MR316772
  6. [BIZ] Bessis, D., Itzykson, Cl., Zuber, J.-B. : Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109-157 (1980). Zbl0453.05035MR603127
  7. [B-K] Brezin, E., Kazakov, V., Phys. Lett., 236 B 144 (1990). MR1040213
  8. [C] Chihara, T.: An introduction to orthogonal polynomials, Gordon and Breach, NY, 1978. Zbl0389.33008MR481884
  9. [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T. : Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear integrable systems, Classical and quantum theory (Kyoto 1981), pp. 39-119. Singapore : World Scientific1983. Zbl0571.35098MR725700
  10. [D1] Dickey, L. : Soliton equations and integrable systems, World Scientific (1991). MR1147643
  11. [D2] Dickey, L. : Additional symmetries of KP, Grassmannian, and the string equation, preprint 1992. Zbl1020.37555MR1218575
  12. [D] Dijkgraaf, R. : Intersection Theory, Integrable Hierarchies and Topological Field Theory, Lecture notes at Cargese Summer school (1991). Zbl1221.32005MR1204453
  13. [Fa] Fastré, J. : Boson-correspondence for W -algebras, Bäcklund-Darboux transformations and the equation L , P = L n , University of Louvain, doctoral dissertation (1993) 
  14. [GMMMO] Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A. : Matrix models of Two-dimensional gravity and Toda theory, Nuclear Physics B357, 565-618 (1991). MR1114250
  15. [G] Ginsparg, P. : Lectures given at Trieste Summer school (july 1991). 
  16. [GOS] Grinevich, P. G., Orlov, A. Y., Schulman E. I. : On the symmetries of integrable systems, Important developments in soliton theory, Eds. A. S. Fokas, V. E. Zakharov, Springer-Verlag series in non-linear dynamics, p. 283-301 (1993). Zbl0816.35122MR1280479
  17. [G-M] Gross, D., Migdal, A. :Phys. Rev. Lett.64, p. 127 (1990). Zbl1050.81610MR1031944
  18. [G-N] Gross, D. J., Newman, M. J. : Unitary and hermitian matrices in an external field (II). The Kontsevich model and continuum Virasoro constraints, Nucl. Phys. B "80 (1992) 168-180. MR1186583
  19. [H-H] Haine, L., Horozov, E. : Toda Orbits of Laguerre Polynomials and Representations of the Virasoro Algebra, Bulletin des Sciences Math. (1993). Zbl0831.17011MR1245808
  20. [K-R] Kac, V. G., Raina, A. K. : Bombay lectures on highest weight representations of infinite dimensional Lie Algebras, Adv. Series Math. Phys. vol. 2, 1987. Zbl0668.17012MR1021978
  21. [K-S] Karlin, S., Szegö, G.: On certain determinants whose elements are orthogonal polynomials, J. d'An. Math.8, pp 1-157 (1961). Zbl0116.27901MR142972
  22. [Kr] Krichever, I. : On Heisenberg Relations for the Ordinary Linear Differential Operators (1990). 
  23. [Mal] Martinec, E. J. : On the Origin of Integrability in Matrix Models, Comm. Math. Phys.138, 437-449 (1991) Zbl0732.35100MR1110450
  24. [Ma2] Martinec, E. J. : An introduction to 2d Gravity and Solvable String Models (lecture notes at Trieste spring school1991) 
  25. [M-M] Mironov, A., Morozov, A. : On the origin of Virasoro constraints in matrix models : Lagrangian approach, Phys. Letters B vol 252, number 1, 47-52 MR1084723
  26. [O-Sc] Orlov, A. Y., Schulman, E. I. : Additional Symmetries for Integrable and Conformal Algebra Representation, Letters in Math. Phys., 12171-179 (1986) Zbl0618.35107MR865754
  27. [U-T] Ueno, K., Takasaki, K. : Toda Lattice Hierarchy, Adv. Studies in Pure Math.4, (1984) 1-95. Zbl0577.58020MR810623
  28. [vM2] van Moerbeke, P.: Integrable foundations of string theory, in Lecures on Integrable systems, Proceedings of the CIMPA-school, 1991, Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World scientific, pp 163-267 (1994). Zbl0850.81049MR1436468
  29. [VDL1] van de Leur, J. W. : The Adler-Shiota-van Moerbeke formula (preprint 1994) Zbl0844.35109
  30. [VDL2] van de Leur, J. W. : (preprint 1994) 
  31. [W1] Witten, Ed. : Two-dimensional gravity and intersection theory of moduli space, Harvard University lecture; May 1990, Journal of diff. geometry1991. Zbl0757.53049MR1144529

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.