Bigèbres et probabilités, d'après M. Schurmann

P. A. Meyer

Recherche Coopérative sur Programme n°25 (1993)

  • Volume: 44, page 153-162

How to cite

top

Meyer, P. A.. "Bigèbres et probabilités, d'après M. Schurmann." Recherche Coopérative sur Programme n°25 44 (1993): 153-162. <http://eudml.org/doc/274952>.

@article{Meyer1993,
author = {Meyer, P. A.},
journal = {Recherche Coopérative sur Programme n°25},
language = {fre},
pages = {153-162},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Bigèbres et probabilités, d'après M. Schurmann},
url = {http://eudml.org/doc/274952},
volume = {44},
year = {1993},
}

TY - JOUR
AU - Meyer, P. A.
TI - Bigèbres et probabilités, d'après M. Schurmann
JO - Recherche Coopérative sur Programme n°25
PY - 1993
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 44
SP - 153
EP - 162
LA - fre
UR - http://eudml.org/doc/274952
ER -

References

top
  1. [1] M. Schurmann Positive and conditionally positive linear functionals on coalgebras. Quantum Probability II, Springer LN 1136, 1985, p. 475-492. Zbl0581.16007MR819527
  2. [2] M. SchurmannNoncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations, Prob. Th. Rel. Fields, 84, 1990, p. 473-490. Zbl0685.60070MR1042061
  3. [3] M. SchurmannA class of representations of involutive bialgebras, Math. Proc. Cambridge Phil Soc, 107, 1990, p.149-175 Zbl0704.46040MR1021880
  4. [4] M. SchurmannThe Azéma martingales as components of quantum independent increment processes, Sem. Prob. XXV, Springer LN 1485, p. 24-30. Zbl0745.60043MR1187766
  5. [5] M. SchurmannWhite noise on involutive bialgebras, Quantum ProbabilityVI, 1992, p. 401-419, World Scientific. Zbl0932.60104MR1149841
  6. [6] M. SchurmannA central limit theorem for coalgebras, Probability Measures on Groups VIII, Springer LN 1210, 1986, p. 153-157. Zbl0629.46057MR879003
  7. [7] M. SchurmannInfinitely divisible states on cocommutative bialgebras, Probability Measures on Groups IX, Springer LN 1379, 1987, p. 310-324. Zbl0706.46042MR1020537
  8. [8] M. SchurmannNoncommutative stochastic processes with independent and stationary additive increments, J. Multiv. Anal, 38, 1990, p. 15-35. Zbl0694.46045MR1128934
  9. [9] M. SchurmannGaussian states on bialgebras, Quantum Probability V, Springer LN 1442, p. 347-367. Zbl0728.46042MR1091320
  10. [10] M. SchurmannQuantum q-white noise and a q-central limit theorem. Comm. Math. Phys., 140, 1991, p.589-615. Zbl0734.60048MR1130699
  11. Evans ( M.). Existence of quantum diffusions, Prob. Th. Rel. Fields, 81, 1989, p.473-483. Zbl0667.60060MR995806
  12. Evans ( M.) and Hudson ( R.L.). Multidimensional quantum diffusions, Quantum Probability III, Springer LN 1303, 1988, p. 69-88. Zbl0648.46056MR985812
  13. Glockner ( P.)· Quantum stochastic differential equations on *-bigebras, Math. Proc. Cambridge Phil. Soc, 109, 1991, p. 571-595. Zbl0747.60060MR1094755
  14. Hudson ( R.L.) and Parthasarathy ( K.R.). 1. Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, p. 301-303. Zbl0546.60058MR745686
  15. Mohari ( A.). Quantum stochastic calculus with infinite degrees of freedom and its applications. PhD thesis, ISI Delhi 1992. 
  16. Mohari ( A.) and Sinha ( K.B.). Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhya (A), 52, 1990, p. 43-57. Zbl0719.60126MR1176275
  17. Parthasarathy ( K.R.). An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel1992. Zbl06106787MR1164866
  18. Von Waldenfels ( W.). Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. Quantum Probability I, Springer LN 1055, 1984. Zbl0532.60055MR782919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.