Anyonic Groups

Shahn Majid

Recherche Coopérative sur Programme n°25 (1992)

  • Volume: 43, page 147-162

How to cite

top

Majid, Shahn. "Anyonic Groups." Recherche Coopérative sur Programme n°25 43 (1992): 147-162. <http://eudml.org/doc/274992>.

@article{Majid1992,
author = {Majid, Shahn},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {supersymmetry; anyonic symmetry; quantum groups; braided category; non-standard quantum group; braidings; anyonic quantum groups},
language = {eng},
pages = {147-162},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Anyonic Groups},
url = {http://eudml.org/doc/274992},
volume = {43},
year = {1992},
}

TY - JOUR
AU - Majid, Shahn
TI - Anyonic Groups
JO - Recherche Coopérative sur Programme n°25
PY - 1992
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 43
SP - 147
EP - 162
LA - eng
KW - supersymmetry; anyonic symmetry; quantum groups; braided category; non-standard quantum group; braidings; anyonic quantum groups
UR - http://eudml.org/doc/274992
ER -

References

top
  1. [1] K. Fredenhagen, K. H. Rehren, and B. Schroer. Superselection sectors with braid statistics and exchange algebras. Comm. Math. Phys.125 (1989) 201-226. Zbl0682.46051MR1016869
  2. [2] R. Longo. Index of subfactors and statistics of quantum fields. Comm. Math. Phys.126 (1989) 217. Zbl0682.46045MR1027496
  3. [3] J. Fröhlich and F. Gabbiani. Braid statistics in local quantum theory. Rev. Math. Phys.2 (1990) 251-353. Zbl0723.57002MR1104414
  4. [4] P. Freyd and D. Yetter. Braided compact closed categories with applications to low dimensional topology. Adv. Math.77 (1989) 156-182. Zbl0679.57003MR1020583
  5. [5] S. Majid. Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A5 (1990) 1-91. Zbl0709.17009MR1027945
  6. [6] A. Joyal and R. Street. Braided monoidal categories. Mathematics Reports86008, Macquarie University (1986). Zbl0845.18005
  7. [7] N. Yu Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103 (1991) 547-597. Zbl0725.57007MR1091619
  8. [8] S. Majid. Reconstruction theorems and rational conformal field theories. Int. J. Mod. Phys.6 (1991) 4359-4374. Zbl0728.17011MR1126612
  9. [9] S. Majid. Braided groups and algebraic quantum field theories. Lett. Math. Phys.22 (1991) 167-176. Zbl0745.16019MR1129171
  10. [10] S. Majid. Examples of braided groups and braided matrices. J. Math. Phys.32 (1991) 3246-3253. Zbl0821.16042MR1137374
  11. [11] S. Majid. Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10 (1991). Zbl0781.17006MR1188817
  12. [12] S. Majid. Cross products by braided groups and bosonization. To appear in J. Algebra. Zbl0807.16036MR1257312
  13. [13] F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World. Sci. (1990). Zbl0709.62735MR1081990
  14. [14] J. Fröhlich and P.-A. Marchetti. Quantum field theories of vortices and anyons. Comm. Math. Phys.121 (1989) 177. Zbl0819.58045MR985396
  15. [15] M. Cohen. Hopf algebras acting on semiprime algebras. Contemp. Math.43 (1985) 49-61. Zbl0568.16009MR810642
  16. [16] M. E. Sweedler. Hopf Algebras. Benjamin (1969). Zbl0194.32901MR252485
  17. [17] V. G. Drinfeld. Quantum groups. In A. Gleason, ed., Proceedings of the ICM, pages 798-820, Rhode Island, AMS (1987). Zbl0667.16003MR934283
  18. [18] D. I. Gurevich. Algebraic aspects of the quantum Yang-Baxter equation. Leningrad Math. J.2 (1991) 801-828. Zbl0728.17012MR1080202
  19. [19] Yu. I. Manin. Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal (1988). Zbl0724.17006MR1016381
  20. [20] P. Deligne and J. S. Milne. Tannakian categories. Number 900 in Lec. Notes in Math.Springer (1982). Zbl0477.14004
  21. [21] S. Majid. Representation-theoretic rank and double Hopf algebras. Comm. Algebra18 (1990) 3705-3712. Zbl0715.16013MR1068616
  22. [22] S. Majid. More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math72 (1990) 133-148. Zbl0725.17015MR1098985
  23. [23] S. Majid. Doubles of quasitriangular Hopf algebras. Comm. Algebra19 (1991) 3061-3073. Zbl0767.16014MR1132774
  24. [24] S. Majid. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra130 (1990) 17-64. Zbl0694.16008MR1045735
  25. [25] S. Majid. Hopf algebras for physics at the Planck scale. J. Classical and Quantum Gravity5 (1988) 1587-1606. Zbl0672.16009MR973262
  26. [26] S. Majid. Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Fund. Analysis95 (1991) 291-319. Zbl0741.46033MR1092128
  27. [27] D. Radford. On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. Zbl0733.16015MR1125700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.