Anyonic Groups
Recherche Coopérative sur Programme n°25 (1992)
- Volume: 43, page 147-162
Access Full Article
topHow to cite
topMajid, Shahn. "Anyonic Groups." Recherche Coopérative sur Programme n°25 43 (1992): 147-162. <http://eudml.org/doc/274992>.
@article{Majid1992,
author = {Majid, Shahn},
journal = {Recherche Coopérative sur Programme n°25},
keywords = {supersymmetry; anyonic symmetry; quantum groups; braided category; non-standard quantum group; braidings; anyonic quantum groups},
language = {eng},
pages = {147-162},
publisher = {Institut de Recherche Mathématique Avancée - Université Louis Pasteur},
title = {Anyonic Groups},
url = {http://eudml.org/doc/274992},
volume = {43},
year = {1992},
}
TY - JOUR
AU - Majid, Shahn
TI - Anyonic Groups
JO - Recherche Coopérative sur Programme n°25
PY - 1992
PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
VL - 43
SP - 147
EP - 162
LA - eng
KW - supersymmetry; anyonic symmetry; quantum groups; braided category; non-standard quantum group; braidings; anyonic quantum groups
UR - http://eudml.org/doc/274992
ER -
References
top- [1] K. Fredenhagen, K. H. Rehren, and B. Schroer. Superselection sectors with braid statistics and exchange algebras. Comm. Math. Phys.125 (1989) 201-226. Zbl0682.46051MR1016869
- [2] R. Longo. Index of subfactors and statistics of quantum fields. Comm. Math. Phys.126 (1989) 217. Zbl0682.46045MR1027496
- [3] J. Fröhlich and F. Gabbiani. Braid statistics in local quantum theory. Rev. Math. Phys.2 (1990) 251-353. Zbl0723.57002MR1104414
- [4] P. Freyd and D. Yetter. Braided compact closed categories with applications to low dimensional topology. Adv. Math.77 (1989) 156-182. Zbl0679.57003MR1020583
- [5] S. Majid. Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A5 (1990) 1-91. Zbl0709.17009MR1027945
- [6] A. Joyal and R. Street. Braided monoidal categories. Mathematics Reports86008, Macquarie University (1986). Zbl0845.18005
- [7] N. Yu Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103 (1991) 547-597. Zbl0725.57007MR1091619
- [8] S. Majid. Reconstruction theorems and rational conformal field theories. Int. J. Mod. Phys.6 (1991) 4359-4374. Zbl0728.17011MR1126612
- [9] S. Majid. Braided groups and algebraic quantum field theories. Lett. Math. Phys.22 (1991) 167-176. Zbl0745.16019MR1129171
- [10] S. Majid. Examples of braided groups and braided matrices. J. Math. Phys.32 (1991) 3246-3253. Zbl0821.16042MR1137374
- [11] S. Majid. Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10 (1991). Zbl0781.17006MR1188817
- [12] S. Majid. Cross products by braided groups and bosonization. To appear in J. Algebra. Zbl0807.16036MR1257312
- [13] F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World. Sci. (1990). Zbl0709.62735MR1081990
- [14] J. Fröhlich and P.-A. Marchetti. Quantum field theories of vortices and anyons. Comm. Math. Phys.121 (1989) 177. Zbl0819.58045MR985396
- [15] M. Cohen. Hopf algebras acting on semiprime algebras. Contemp. Math.43 (1985) 49-61. Zbl0568.16009MR810642
- [16] M. E. Sweedler. Hopf Algebras. Benjamin (1969). Zbl0194.32901MR252485
- [17] V. G. Drinfeld. Quantum groups. In A. Gleason, ed., Proceedings of the ICM, pages 798-820, Rhode Island, AMS (1987). Zbl0667.16003MR934283
- [18] D. I. Gurevich. Algebraic aspects of the quantum Yang-Baxter equation. Leningrad Math. J.2 (1991) 801-828. Zbl0728.17012MR1080202
- [19] Yu. I. Manin. Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal (1988). Zbl0724.17006MR1016381
- [20] P. Deligne and J. S. Milne. Tannakian categories. Number 900 in Lec. Notes in Math.Springer (1982). Zbl0477.14004
- [21] S. Majid. Representation-theoretic rank and double Hopf algebras. Comm. Algebra18 (1990) 3705-3712. Zbl0715.16013MR1068616
- [22] S. Majid. More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math72 (1990) 133-148. Zbl0725.17015MR1098985
- [23] S. Majid. Doubles of quasitriangular Hopf algebras. Comm. Algebra19 (1991) 3061-3073. Zbl0767.16014MR1132774
- [24] S. Majid. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra130 (1990) 17-64. Zbl0694.16008MR1045735
- [25] S. Majid. Hopf algebras for physics at the Planck scale. J. Classical and Quantum Gravity5 (1988) 1587-1606. Zbl0672.16009MR973262
- [26] S. Majid. Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Fund. Analysis95 (1991) 291-319. Zbl0741.46033MR1092128
- [27] D. Radford. On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. Zbl0733.16015MR1125700
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.