On finding optimal parameters of an oscillatory model of handwriting
Gaëtan André; Frédéric Messine
RAIRO - Operations Research - Recherche Opérationnelle (2014)
- Volume: 48, Issue: 4, page 509-520
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. André, www.irit.fr/∼Gaetan.Andre/publications.php.
- [2] T.F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt.6 (1993) 418–445. Zbl0855.65063MR1387333
- [3] T.F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program.67 (1994) 189–224. Zbl0842.90106MR1305566
- [4] E. Gilet, Modélisation bayésienne d’une boucle de perception action : Application al’écriture (Bayesian Modelisation of a sensori-motor loop: application to reading and handwriting). Thesis, Joseph, Fourier University, Grenoble, France (2009).
- [5] J.M. Hollerbach, An oscillatory theory of handwriting. Biol. Cybern.156 (1981) 139–156.
- [6] M. Longcamp et al., The imprint of action: motor cortex involvement in visual perception of handwritten letters. NeuroImage23 (2006) 681–688.
- [7] R. Plamondon et al., Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern.69 (1993) 119–128.
- [8] R. Plamondon, On-Line and Off-Line, Handwriting Recognition: A Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 63–84.
- [9] T. Plötz and G. Fink, Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recogn. (IJDAR) 12 (2009) 169–298.
- [10] P. Viviani and T. Flash, Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform.21 (1995) 32–53.