Multi-objective geometric programming problem with Karush−Kuhn−Tucker condition using ϵ-constraint method
RAIRO - Operations Research - Recherche Opérationnelle (2014)
- Volume: 48, Issue: 4, page 429-453
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C.S. Beightler and D.T. Phillips. Appl. Geometric Programming, John Wiley and Sons, New York (1976). MR680967
- [2] M.P. Biswal, Fuzzy Programming technique to solve multi-objective Geometric Programming Problems. Fuzzy Sets Syst.51 (1992) 67–71. Zbl0786.90086MR1187372
- [3] S.J. Chen and C.L. Hwang, Fuzzy multiple Attribute decision making methods and Applications, Springer, Berline (1992). Zbl0768.90042MR1223777
- [4] R.J. Duffin, E.L. Peterson and C.M. Zener, Geometric Programming Theory and Application, John Wiley and Sons, New York (1967). Zbl0171.17601MR214374
- [5] A.K. Bit, Multi-objective Geometric Programming Problem: Fuzzy programming with hyperbolic membership function. J. Fuzzy Math.6 (1998) 27–32. Zbl0905.90181MR1609923
- [6] B.Y. Cao, Fuzzy Geometric Programming (i). Fuzzy Sets Syst.53 (1993) 135–153. Zbl0804.90135MR1202983
- [7] B.Y. Cao, Solution and theory of question for a kind of Fuzzy Geometric Program, proc, 2nd IFSA Congress, Tokyo 1 (1987) 205–208.
- [8] S.T. Liu, Posynomial Geometric Programming with parametric uncertainty. Eur. J. Oper. Res.168 (2006) 345–353. Zbl1083.90040MR2170242
- [9] Y. Wang, Global optimization of Generalized Geometric Programming. Comput. Math. Appl.48 (2004) 1505–1516. Zbl1066.90096MR2107107
- [10] H.R. Maleki and M. Maschinchi, Fuzzy number Multi-objective Geometric Progrmming. In 10th IFSA World congress, IFSA (2003), Istanbul, Turkey 536–538.
- [11] S. Islam and T.K. Ray, A new Fuzzy Multi-objective Programming: Entropy based Geometric Programming and its Applications of transportation problems. Eur. J. Oper. Res.173 (2006) 387–404. Zbl1113.90021MR2230181
- [12] G. Mavrotas, Effective implementation of the ϵ-constraint method in Multi-objective mathematical programming problems. Appl. Math. Comput. 213 (2009) 455–465. Zbl1168.65029MR2536670
- [13] V. Chankong and Y.Y. Haimes, Multiobjective decision making: Theory and Methodology, North-Holland, New York (1983). Zbl0622.90002MR780745
- [14] A.P. Wierzbicki, On the Completeness and constructiveness of parametric characterization to vector optimization problems, OR Spectrum8 (1986) 73-87. Zbl0592.90084MR848533
- [15] D. Diakoulaki, G. Mavrotas and L. Papayannakis, Determining objective weights in multiple criteria problems: The critical method. Comput. Oper. Res.22 (1995) 763–770. Zbl0830.90079
- [16] H. Asham and A.B. Khan, A simplex type algorithm for general transportation problems. An alternative to steping stone. J. Oper. Res. Soc. 40 (1989) 581–590. Zbl0674.90066
- [17] S.P. Evans, Derivation and Analysis of some models for combining trip distribution and assignment. Transp. Res.10 (1976) 37–57.
- [18] F.L. Hitchcack, The distribution of a product from several sources to numerous localities. J. Math. Phys.20 (1941) 224–236. Zbl0026.33904MR4469JFM67.0528.04
- [19] S. Islam, Multi-objective marketing planning inventory model: A Geometric programming approach. Appl. Math. Comput.205 (2008) 238–246. Zbl1151.90313MR2466627
- [20] L.V. Kantorovich, Mathematical Methods of organizing and planning production in Russia. Manag. Sci.6 (1960) 366–422. Zbl0995.90532MR129016
- [21] A.G. Wilson, Entropy in urban and regional modeling, Pion, London (1970).
- [22] S.J. Boyd, D. Patil and M. Horowitz, Digital circuit sizing via Geometric Programming. Oper. Res.53 (2005) 899–932. Zbl1165.90655MR2193868
- [23] S.J. Boyd, L. Vandenberghe and A. Hossib, A tutorial on Geometric Programming. Optim. Eng.8 (2007) 67–127. Zbl1178.90270MR2330467
- [24] M. Chiang and S.J. Boyd, Geometric Programing duals of channel capacity and rate distortion. IEEE Trans. Inf Theory50 (2004) 245–258. Zbl1288.94032MR2044071
- [25] K.L. Hsiung, S.J. Kim and S.J. Boyd, Power control in lognormal fading wireless channels with optimal probability specifications via robust Geometric programming. In Proceeding IEEE, American Control Conference, Portland, OR 6 (2005) 3955–3959.
- [26] K. Seong, R. Narasimhan and J.M. Cioffi, Queue proportional Scheduling via Geometric programming in fading broadcast channels, IEEE J. Select. Areas Commun.24 (2006) 1593–1602.
- [27] B.Y. Cao, The further study of posynomial GP with Fuzzy co-efficient. Math. Appl.5 (1992) 119–120.
- [28] B.Y. Cao, Extended Fuzzy GP. J. Fuzzy Math.1 (1993) 285–293. Zbl0800.90763MR1230319
- [29] C.L. Hwang and A. Masud, Multiple objective decision making methods and applications, A state of art survey series Lect. Notes Econ. Math. Syst., Springer-Varlag, Berlin vol. 164 (1979). Zbl0397.90001MR567888
- [30] Y.Y. Haimes, L.S. Lasdon and D.A. Wismer, On a Bicriterion formulation of problems integrated System identification and System optimization. IEEE Trans. Syst. Man Cybern. (1971) 296–297. Zbl0224.93016MR300411
- [31] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge (2004). Zbl1058.90049MR2061575
- [32] T. Soorpanth, Multi-objective Analog Design via Geometric programming. ECTI Conference2 (2008) 729–732.
- [33] F. Waiel and El. Wahed, A Multi-objective transportation problem under fuzzyness. Fuzzy Sets Syst. 117 (2001) 27–33. Zbl0965.90001MR1802773
- [34] T.K. Ray, S. Kar and M. Maiti, Multi-objective inventory model of deteriorating items with space constraint in a Fuzzy environment. Tamsui Oxford J. Math. Sci.24 (2008) 37–60. Zbl1141.90005MR2428957
- [35] H.S. Hall and S.R. Knight, Higher Algebra, Macmillan, New York (1940). JFM21.0076.01
- [36] S. Islam, Multi-objective marketing planning inventory model. A Geometric programming approach. Appl. Math. Comput. 205 (2008) 238–246. Zbl1151.90313MR2466627
- [37] K.M. Miettinen, Non-linear Multi-objective optimization, Kluwer Academic Publishers, Boston, Massachusetts (1999).
- [38] E.L. Peterson, The fundamental relations between Geometric programming duality, Parametric programming duality and Ordinary Lagrangian duality. Annal. Oper. Res. 105 (2001) 109–153. Zbl0996.90060MR1879422
- [39] J. Rajgopal and D.L. Bricker, Solving posynomial Geometric programming problems via Generalized linear programming. Comput. Optim. Appl.21 (2002) 95–109. Zbl0988.90021MR1883091
- [40] R.E. Bellman and L.A. Zadeh, Decision making in Fuzzy environment. Mang. Sci. 17B (1970) 141–164. Zbl0224.90032MR301613
- [41] H.J. Zimmermann, Fuzzy set theory and its Applications, 2nd ed. Kluwer Academic Publishers, Dordrecht-Boston (1990). Zbl0719.04002MR1174743
- [42] Surabhi Sinha and S.B. Sinha, KKT transportation approach for Multi-objective multi-level linear programming problem. Eur. J. Oper. Res.143 (2002) 19–31. Zbl1073.90552MR1922619
- [43] Jean-Francois Berube, M.Gendreau and J. Potvin, An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits. Eur. J. Oper. Res. 194 (2009) 39–50. Zbl1179.90274MR2469192
- [44] M. Laumanns, L. Thiele and E. Zitzler, An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res.169 (2006) 932–942. Zbl1079.90122MR2174001
- [45] M. Luptacik, Kuhn−Tucker Condition. Math. Optim. Economic Anal. 36 (2010) 25–58.
- [46] L. Pascual and A. Ben-Israel, Vector-Valued Criteria in Geometric Programming. Oper. Res. 19 98–104. Zbl0232.90058MR274041