Interactive compromise hypersphere method and its applications
RAIRO - Operations Research - Recherche Opérationnelle (2012)
- Volume: 46, Issue: 3, page 235-252
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G.T. Anthony, B. Bittner, B.P. Butler, M.G. Cox, R. Elligsen, A.B. Forbes, H. Gross, S.A. Hannaby, P.M. Harris and J. Kok, Chebychev reference software for evaluation of coordinate measuring machine data, Report EUR 15304 EN, National Physical Laboratory, Teddington, United Kingdom (1993).
- [2] E. Ballestero, Selecting the CP metric : A risk aversion approach. Eur. J. Oper. Res.97 (1996) 593–596. Zbl0919.90047
- [3] C. Bazgan, H. Hugot and D. Vanedrpooten, Solving efficiently the 0-1 multi-objective knapsack problem. Comput. Oper. Res.36 (2009) 260–279. Zbl1175.90323MR2577251
- [4] B.P. Butler, A.B. Forbes and P.M. Harris, Algorithms for geometric tolerance assessment. NPL Report DITC 228/94, National Physical Laboratory, Teddington, United Kingdom (1994).
- [5] E. Carrizosa, E. Conde, A. Pacual, D. Romero-Morales, Closest solutions in ideal-point methods, in Advances in multiple objective and goal programming, edited by R. Caballero, F. Ruiz and R.E. Steuer. Springer Verlag, Berlin, LNEMS 455 (1996) 274–281. MR1487403
- [6] M. Eben-Chaime, Parametric solution for linear bicriteria knapsack models. Manag. Sci.42 (1996) 1565–1575. Zbl0879.90162
- [7] M. Ehrgott, Multicriteria optimization. Springer Verlag, Berlin (2002). Zbl1132.90001MR2143243
- [8] O.M. Elmabrouk, A linear programming technique for the pptimization of the activities in maintenance projects. Int. J. Eng. Technol. IJET-IJENS 11 (2011).
- [9] J.P. Evans and R.E. Steuer, A revised simplex method for linear multiple objective programs. Math. Programm.5 (1973) 54–72. Zbl0281.90045MR384115
- [10] T. Gal and K. Wolf, Stability in vector maximization – a survey. Eur. J. Oper. Res.25 (1986) 169–182. Zbl0589.90077MR841147
- [11] X. Gandibleux and A. Freville, Tabu search based procedure for solving the 0/1 multiobjective knapsack problem : The two objective case. J. Heuristics6 (2000) 361–383. Zbl0969.90079
- [12] S.I. Gass, An illustrated guide to linear programming. Mc Graw-Hill Book Company, New York (1970). Zbl0594.90052
- [13] S.I. Gass, Linear programming, methods and applications. Mc Graw-Hill Book Company, New York (1975). Zbl0594.90052MR373586
- [14] S.I. Gass and P.G. Roy, The compromise hypersphere for multiobjective linear programming. Eur. J. Oper. Res.144 (2003) 459–479. Zbl1028.90049MR1937319
- [15] S.I. Gass, H.H. Harary and C. Witzgall, Fitting circles and spheres to coordinate measuring machine data. Int. J. Flexible Manuf.10 (1998) 5–25. Zbl0909.90272MR1641311
- [16] C. Gomes da Silva, J. Climaco and J. Rui Figueria, Core problem in bi-criteria {0,1} -knapsack problem. Comput. Oper. Res. 35 (2008) 2292–2306. Zbl1169.90439MR2585224
- [17] P. Hansen, M. Labbe and R.E. Wendell, Sensitivity analysis in multiple objective linear programming : the tolerance approach. Eur. J. Oper. Res.38 (1989) 63–69. Zbl0679.90069MR978494
- [18] M. Hladik, Additive and multiplicative tolerance in multiobjective linear programming. Oper. Res. Lett.36 (2008) 393–396. Zbl1152.90591MR2424469
- [19] J. Knutson and I. Bitz, Project Management. Amacom, New York (1991).
- [20] S. Opricovic and G.H. Tzeng, Compromise solution by MCDM methods : a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res.156 (2004) 445–455. Zbl1056.90090
- [21] S. Opricovic and G.H. Tzeng, Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res.178 (2007) 514–529. Zbl1107.90376
- [22] S. Sitarz, Hybrid methods in multi-criteria dynamic programming. Appl. Math. Comput.180 (2006) 38–45. Zbl1103.65076MR2263363
- [23] S. Sitarz, Postoptimal analysis in multicriteria linear programming. Eur. J. Oper. Res.191 (2008) 7–18. Zbl1146.90065MR2432560
- [24] S. Sitarz, Ant algorithms and simulated annealing for multicriteria dynamic programming. Comput. Oper. Res.36 (2009) 433–441. Zbl1163.90743MR2579931
- [25] S. Sitarz, Standard sensitivity analysis and additive tolerance approach in MOLP. Ann. Oper. Res.181 (2010) 219–232. Zbl1209.90315MR2740980
- [26] S. Sitarz, Dynamic programming with ordered structures : theory, examples and applications. Fuzzy Sets and Systems161 (2010) 2623–2641. Zbl1205.90291MR2673607
- [27] S. Sitarz, Sensitivity analysis of weak efficiency in MOLP. Asia-Pacific J. Oper. Res.28 (2011) 445–455. Zbl1233.90251MR2823598
- [28] S. Sitarz, Mean value and volume-based sensitivity analysis for Olympic rankings. Eur. J. Oper. Res.216 (2012) 232–238. Zbl1237.90122MR2842162
- [29] R.E. Steuer and E. ChooAn Interactive weighted Tchebycheff procedure for multiple objective programming. Math. Programm.26 (1981) 326–344. Zbl0506.90075MR707066
- [30] R. Steuer, Multiple criteria optimization theory : computation and application. John Willey, New York (1986). Zbl0663.90085MR836977
- [31] D. Tuyttens, J. Teghem, P. Fortemps and K. Van Nieuwenhuyse, Performance of the MOSA method for the bicriteria assignment problem. J. Heuristics6 (2000) 259–310. Zbl1071.90567
- [32] T. Trzaskalik and S. Sitarz, Discrete dynamic programming with outcomes in random variable structures. Eur. J. Oper. Res.177 (2007) 1535–1548. Zbl1102.90032MR2271406
- [33] E.L. Ulungu and J. Teghem, Multicriteria assignment problem – a new method. Technical Report, Faculte Polytechnique de Mons, Belgium (1992). Zbl0853.90097
- [34] A.P. Wierzbicki, Reference point approaches, in Multicriteria Decision Making, edited by R. Gal, T.J. Stewart, T. Hanne. Kluwer, Boston, MA (Chap. 9) (1999). Zbl0978.90085MR1735262
- [35] D.J. White, A special Multi-objective assigmnet problem. J. Oper. Res. Soc.35 (1984) 759–767. Zbl0548.90079
- [36] A. Woolf and B. Murray, Faster construction projects with CPM Scheduling. McGraw Hill (2007).
- [37] P.L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl.49 (1975) 430–468. Zbl0313.65047MR421660
- [38] M. Zeleny, Multiple Criteria Decision Making. McGraw-Hill Book Company, New York (1982). Zbl0588.90019
- [39] S. Zionts and J. Wallenius, An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Manag. Sci.29 (1983) 519–529. Zbl0519.90083MR706797