Solving the Minimum Independent Domination Set Problem in Graphs by Exact Algorithm and Greedy Heuristic
Christian Laforest; Raksmey Phan
RAIRO - Operations Research - Recherche Opérationnelle (2013)
- Volume: 47, Issue: 3, page 199-221
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Baez-Duarte, Hardy–ramanujan’s asymptotic formula for partitions and the central limit theorem. Adv. Math.125 (1997) 114–120. Zbl0873.60010MR1427803
- [2] N. Bourgeois, B. Escoffier and V.T. Paschos, Fast algorithm for min independent dominating set. SIROCCO, Lect. Notes Comput. Sci. 6058 (2010) 247–261. Zbl1284.05270MR2671377
- [3] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP–Completeness (Series of Books in the Mathematical Sciences). W.H. Freeman and Co Ltd, first edition edition (1979). Zbl0411.68039MR519066
- [4] M.M. Halldórsson. Approximating the minimum maximal independence number. Inf. Process. Lett.46 (1993) 169–172. Zbl0778.68041MR1229204
- [5] F. Harary and M. Livingston, Independent domination in hypercubes. Appl. Math. Lett.6 (1993) 27–28. Zbl0780.05031MR1347282
- [6] J. Haviland, Independent domination in triangle–free graphs. Discrete Math.308 (2008) 3545–3550. Zbl1168.05347MR2421675
- [7] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, On generating all maximal independent sets. Inf. Process. Lett.27 (1988) 119–123. Zbl0654.68086MR933271
- [8] F. Kuhn, T. Nieberg, T. Moscibroda and R. Wattenhofer, Local approximation schemes for ad hoc and sensor networks. DIALM-POMC (2005) 97–103.
- [9] J. Little, Branch and Bound Methods for Combinatorial Problems. Ulan Press (2012).
- [10] C. Liu and Y. Song, Exact algorithms for finding the minimum independent dominating set in graphs. ISAAC, Lect. Notes Comput. Sci. 4288 (2006) 439–448. Zbl1135.05315MR2296126
- [11] Y.L. Orlovich, V.S. Gordon and D. de Werra, On the inapproximability of independent domination in 2p3–free perfect graphs. Theor. Comput. Sci.410 (2009) 977–982. Zbl1162.68027MR2492039
- [12] A. Potluri and A. Negi, Some observations on algorithms for computing minimum independent dominating set. in Springer IC3, Commun. Comput. Inf. Sci. 168 (2011) 57–68.
- [13] W.C. Shiu, X.-G. Chen and W.H. Chan, Triangle–free graphs with large independent domination number. Discrete Optim.7 (2010) 86–92. Zbl1264.05095MR2609062
- [14] Y. Song, T. Liu and K. Xu, Independent domination on tree convex bipartite graphs, in Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, edited by J. Snoeyink, P. Lu, K. Su and L. Wang. Springer Berlin Heidelberg, Lect. Notes Comput. Sci. 7285 (2012) 129–138. Zbl1304.68064
- [15] J. Steele, The Cauchy–Schwarz master class: an introduction to the art of mathematical inequalities. MAA problem books series. Cambridge University Press (2004). Zbl1060.26023MR2062704