Fluid limits for the queue length of jobs in multiserver open queueing networks
RAIRO - Operations Research - Recherche Opérationnelle (2014)
- Volume: 48, Issue: 3, page 349-363
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968). Zbl0944.60003MR233396
- [2] A.A. Borovkov, Weak convergence of functionals of random sequences and processes defined on the whole axis. Proc. Stecklov Math. Inst.128 (1972) 41–65. Zbl0287.60013MR319237
- [3] A.A. Borovkov, Stochastic Processes in Queueing Theory. Springer, Berlin (1976). Zbl0319.60057MR391297
- [4] A.A. Borovkov, Asymptotic Methods in Queueing Theory. Wiley, New York (1984). Zbl0544.60085MR745620
- [5] A.A. Borovkov, Limit theorems for queueing networks. Theory Prob. Appl.31 (1986) 413–427. Zbl0617.60089MR866868
- [6] H. Chen and A. Mandelbaum, Stochastic discrete flow networks: Diffusion approximations and bottlenecks. The Annals of Probability19 (1991) 1463–1519. Zbl0757.60094MR1127712
- [7] C. Flores, Diffusion approximations for computer communications networks. in Computer Communications, Proc. Syrup. Appl. Math., edited by B. Gopinath. American Mathematical Society (1985) 83–124. Zbl0581.90027MR807815
- [8] P.W. Glynn, Diffusion approximations. in Handbooks in Operations Research and Management Science, edited by D.P. Heyman and M.J. Sobel, Vol. 2 of Stochastic Models. North-Holland (1990). Zbl0703.60072MR1100747
- [9] P.W. Glynn and W. Whitt, A new view of the heavy-traffic limit theorems for infinite-server queues. Adv. Appl. Probab.23 (1991) 188–209. Zbl0716.60105MR1091098
- [10] B. Grigelionis and R. Mikulevičius, Diffusion approximation in queueing theory. Fundamentals of Teletraffic Theory. Proc. Third Int. Seminar on Teletraffic Theory (1984) 147–158.
- [11] J.M. Harrison, The heavy traffic approximation for single server queues in series. Adv. Appl. Probab.10 (1973) 613–629. Zbl0287.60102MR359066
- [12] J.M. Harrison, The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab.10 (1978) 886–905. Zbl0387.60090MR509222
- [13] J.M. Harrison and A.J. Lemoine, A note on networks of infinite-server queues. J. Appl. Probab.18 (1981) 561–567. Zbl0459.60081MR611802
- [14] J.M. Harrison and M.I. Reiman, On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math.41 (1981) 345–361. Zbl0464.60081MR628959
- [15] J.M. Harrison and R.J. Williams, Brownian models of open queueing networks with homogeneous customer populations. Stochastics22 (1987) 77–115. Zbl0632.60095MR912049
- [16] D.L. Iglehart, Multiple channel queues in heavy traffic. IV. Law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17 (1971) 168–180. Zbl0203.50402MR312604
- [17] D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic I. Adv. Appl. Probab.2 (1970) 150–175. Zbl0218.60098MR266331
- [18] D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic II: Sequences, networks and batches. Adv. Appl. Probab.2 (1970) 355–364. Zbl0206.22503MR282443
- [19] D.P. Johnson, Diffusion Approximations for Optimal Filtering of Jump Processes and for Queueing Networks. Ph.D. dissertation, University of Wisconsin (1983). MR2632848
- [20] F.I. Karpelevitch and A.Ya. Kreinin, Joint distributions in Poissonian tandem queues. Queueing Systems12 (1992) 274–286. Zbl0811.60079MR1200867
- [21] F.P. Kelly, An asymptotic analysis of blocking. Modelling and Performance Evaluation Methodology. Springer, Berlin (1984) 3–20. Zbl0599.60082MR893651
- [22] G.P. Klimov, Several solved and unsolved problems of the service by queues in series (in Russian). Izv. AN USSR, Ser. Tech. Kibern. 6 (1970) 88–92.
- [23] E.V. Krichagina, R.Sh. Liptzer and A.A. Pukhalsky, The diffusion approximation for queues with input flow, depending on a queue state and general service. Theory Prob. Appl.33 (1988) 124–135. Zbl0637.60101
- [24] Ya.A. Kogan and A.A. Pukhalsky, Tandem queues with finite intermediate waiting room and blocking in heavy traffic. Prob. Control Int. Theory17 (1988) 3–13. Zbl0643.60080MR935696
- [25] A.J. Lemoine, Network of queues – A survey of weak convergence results. Management Science24 (1978) 1175–1193. Zbl0396.60088MR652285
- [26] R.Sh. Liptzer and A.N. Shiryaev, Theory of Martingales. Kluwer, Boston (1989).
- [27] S. Minkevičius, On the global values of the queue length in open queueing networks, Int. J. Comput. Math. (2009) 1029–0265. Zbl1191.60103
- [28] S. Minkevičius, On the law of the iterated logarithm in multiserver open queueing networks, Stochastics, 2013 (accepted). Zbl1306.60143
- [29] S. Minkevičius and G. Kulvietis, Application of the law of the iterated logarithm in open queueing networks. WSEAS Transactions on Systems6 (2007) 643–651. Zbl0981.60093
- [30] Yu.V. Prohorov, Convergence of random processes and limit theorems in probability theory. Theory Prob. Appl.1 (1956) 157–214. Zbl0075.29001MR84896
- [31] M.I. Reiman, Open queueing networks in heavy traffic. Math. Oper. Res.9 (1984) 441–458. Zbl0549.90043MR757317
- [32] M.I. Reiman, A multiclass feedback queue in heavy traffic. Adv. Appl. Probab.20 (1988) 179–207. Zbl0647.60100MR932539
- [33] M.I. Reiman and B. Simon, A network of priority queues in heavy traffic: one bottleneck station. Queueing Systems6 (1990) 33–58. Zbl0818.60081MR1053667
- [34] L. Sakalauskas and S. Minkevičius, On the law of the iterated logarithm in open queueing networks. Eur. J. Oper. Res.120 (2000) 632–640. Zbl0981.60093MR1781057
- [35] A.V. Skorohod, Studies in the Theory of Random Processes. Addison-Wesley, New York (1965). Zbl0146.37701MR185620
- [36] V. Strassen, An invariance principle for the law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete3 (1964) 211–226. Zbl0132.12903MR175194
- [37] W. Szczotka and F.P. Kelly, Asymptotic stationarity of queues in series and the heavy traffic approximation. The Annals of Probability18 (1990) 1232–1248. Zbl0726.60092MR1062067
- [38] W. Whitt, Weak convergence theorems for priority queues: preemptive resume discipline. J. Appl. Probab.8 (1971) 79–94. Zbl0215.53801MR307389
- [39] W. Whitt, Heavy traffic limit theorems for queues: a survey. in Lecture Notes in Economics and Mathematical Systems, Vol. 98. Springer-Verlag, Berlin, Heidelberg, New York (1971) 307–350. Zbl0295.60081MR394935
- [40] W. Whitt, On the heavy-traffic limit theorem for GI/G/∞ queues. Adv. Appl. Probab.14 (1982) 171–190. Zbl0479.60090MR644013