Complete determination of the number of Galois points for a smooth plane curve
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 93-114
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFukasawa, Satoru. "Complete determination of the number of Galois points for a smooth plane curve." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 93-114. <http://eudml.org/doc/275104>.
@article{Fukasawa2013,
author = {Fukasawa, Satoru},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Galois point; plane curve; positive characteristic; Galois group},
language = {eng},
pages = {93-114},
publisher = {Seminario Matematico of the University of Padua},
title = {Complete determination of the number of Galois points for a smooth plane curve},
url = {http://eudml.org/doc/275104},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Fukasawa, Satoru
TI - Complete determination of the number of Galois points for a smooth plane curve
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 93
EP - 114
LA - eng
KW - Galois point; plane curve; positive characteristic; Galois group
UR - http://eudml.org/doc/275104
ER -
References
top- [1] E. Arbarello - M. Cornalba - P. A. Griffiths - J. Harris, Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985. Zbl0559.14017MR770932
- [2] H. C. Chang, On plane algebraic curves, Chinese J. Math.6 (1978), pp. 185–189. Zbl0405.14009MR529972
- [3] S. Fukasawa, Galois points on quartic curves in characteristic 3, Nihonkai Math. J.17 (2006), pp. 103–110. Zbl1134.14307MR2290435
- [4] S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic, Comm. Algebra 36 (2008), pp. 29–36; II, Geom. Dedicata 127 (2007), pp. 131–137; III, ibid. 146 (2010), pp. 9–20; IV, preprint, arXiv:1011.3648. Zbl1186.14033
- [5] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), pp. 211–218. Zbl1160.14304MR2481846
- [6] S. Fukasawa, Galois points for a non-reflexive plane curve of low degree, preprint. Zbl1314.14054MR3061085
- [7] S. Fukasawa, Galois points for a plane curve in characteristic two, preprint. Zbl1287.14015MR3120635
- [8] D. Goss, Basic structures of function field arithmetic, Springer-Verlag, Berlin (1996). Zbl0874.11004MR1423131
- [9] A. Hefez, Non-reflexive curves, Compositio Math.69 (1989), pp. 3–35. MR986811
- [10] A. Hefez - S. Kleiman, Notes on the duality of projective varieties, ]Geometry Today^ , Prog. Math. vol 60, Birkhäuser, Boston, 1985, pp. 143–183. Zbl0579.14047MR895153
- [11] M. Homma, Funny plane curves in characteristic p > 0, Comm. Algebra, 15 (1987), pp. 1469–1501. Zbl0623.14014MR884025
- [12] M. Homma, A souped-up version of Pardini's theorem and its application to funny curves, Compositio Math.71 (1989), pp. 295–302. Zbl0703.14017MR1022047
- [13] M. Homma, Galois points for a Hermitian curve, Comm. Algebra34 (2006), pp. 4503–4511. Zbl1111.14023MR2273720
- [14] K. Miura - H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), pp. 283–294. Zbl0983.11067MR1749889
- [15] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin (1993). Zbl0816.14011MR1251961
- [16] K. O. Stöhr - J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52 (1986), pp. 1–19. Zbl0593.14020MR812443
- [17] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), pp. 340–355. Zbl1064.14023MR1827887
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.