Complete determination of the number of Galois points for a smooth plane curve

Satoru Fukasawa

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 93-114
  • ISSN: 0041-8994

How to cite

top

Fukasawa, Satoru. "Complete determination of the number of Galois points for a smooth plane curve." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 93-114. <http://eudml.org/doc/275104>.

@article{Fukasawa2013,
author = {Fukasawa, Satoru},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Galois point; plane curve; positive characteristic; Galois group},
language = {eng},
pages = {93-114},
publisher = {Seminario Matematico of the University of Padua},
title = {Complete determination of the number of Galois points for a smooth plane curve},
url = {http://eudml.org/doc/275104},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Fukasawa, Satoru
TI - Complete determination of the number of Galois points for a smooth plane curve
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 93
EP - 114
LA - eng
KW - Galois point; plane curve; positive characteristic; Galois group
UR - http://eudml.org/doc/275104
ER -

References

top
  1. [1] E. Arbarello - M. Cornalba - P. A. Griffiths - J. Harris, Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985. Zbl0559.14017MR770932
  2. [2] H. C. Chang, On plane algebraic curves, Chinese J. Math.6 (1978), pp. 185–189. Zbl0405.14009MR529972
  3. [3] S. Fukasawa, Galois points on quartic curves in characteristic 3, Nihonkai Math. J.17 (2006), pp. 103–110. Zbl1134.14307MR2290435
  4. [4] S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic, Comm. Algebra 36 (2008), pp. 29–36; II, Geom. Dedicata 127 (2007), pp. 131–137; III, ibid. 146 (2010), pp. 9–20; IV, preprint, arXiv:1011.3648. Zbl1186.14033
  5. [5] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), pp. 211–218. Zbl1160.14304MR2481846
  6. [6] S. Fukasawa, Galois points for a non-reflexive plane curve of low degree, preprint. Zbl1314.14054MR3061085
  7. [7] S. Fukasawa, Galois points for a plane curve in characteristic two, preprint. Zbl1287.14015MR3120635
  8. [8] D. Goss, Basic structures of function field arithmetic, Springer-Verlag, Berlin (1996). Zbl0874.11004MR1423131
  9. [9] A. Hefez, Non-reflexive curves, Compositio Math.69 (1989), pp. 3–35. MR986811
  10. [10] A. Hefez - S. Kleiman, Notes on the duality of projective varieties, ]Geometry Today^ , Prog. Math. vol 60, Birkhäuser, Boston, 1985, pp. 143–183. Zbl0579.14047MR895153
  11. [11] M. Homma, Funny plane curves in characteristic p &gt; 0, Comm. Algebra, 15 (1987), pp. 1469–1501. Zbl0623.14014MR884025
  12. [12] M. Homma, A souped-up version of Pardini's theorem and its application to funny curves, Compositio Math.71 (1989), pp. 295–302. Zbl0703.14017MR1022047
  13. [13] M. Homma, Galois points for a Hermitian curve, Comm. Algebra34 (2006), pp. 4503–4511. Zbl1111.14023MR2273720
  14. [14] K. Miura - H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), pp. 283–294. Zbl0983.11067MR1749889
  15. [15] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin (1993). Zbl0816.14011MR1251961
  16. [16] K. O. Stöhr - J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52 (1986), pp. 1–19. Zbl0593.14020MR812443
  17. [17] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), pp. 340–355. Zbl1064.14023MR1827887

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.