The Arithmetic Theory of Local Constants for abelian Varieties

Marco Adamo Seveso

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 127, page 17-40
  • ISSN: 0041-8994

How to cite

top

Seveso, Marco Adamo. "The Arithmetic Theory of Local Constants for abelian Varieties." Rendiconti del Seminario Matematico della Università di Padova 127 (2012): 17-40. <http://eudml.org/doc/275105>.

@article{Seveso2012,
author = {Seveso, Marco Adamo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Selmer group of an abelian variety; -perity conjecture for Selmer groups},
language = {eng},
pages = {17-40},
publisher = {Seminario Matematico of the University of Padua},
title = {The Arithmetic Theory of Local Constants for abelian Varieties},
url = {http://eudml.org/doc/275105},
volume = {127},
year = {2012},
}

TY - JOUR
AU - Seveso, Marco Adamo
TI - The Arithmetic Theory of Local Constants for abelian Varieties
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 127
SP - 17
EP - 40
LA - eng
KW - Selmer group of an abelian variety; -perity conjecture for Selmer groups
UR - http://eudml.org/doc/275105
ER -

References

top
  1. [1] F. Andreatta - E. Z. Goren, Geometry of Hilbert modular varieties over totally ramified primes, Internat. Math. Res. Notices, 33 (2003), pp. 1785–1835. Zbl1045.14012MR1987504
  2. [2] S. Bloch - K. Kato, L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift, Vol. I, Prog. in Math. 86, Birkhauser, Boston (1990), P. Cartier, et al., eds., pp. 333–400. Zbl0768.14001MR1086888
  3. [3] P. Deligne - G. Pappas, Singularités des espaces de modules de Hilbert, en les caractérisque divisant le discriminant, Compos. Math., 90, No. 1 (1994), pp. 59–79. Zbl0826.14027MR1266495
  4. [4] M. Flach, A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math., 412 (1990), pp. 113–127. Zbl0711.14001MR1079004
  5. [5] G. van der Geer, Abelian varieties. Manuscript available at http://staff.science.uva.nl/~bmoonen/boek/BookAV.html. Zbl0698.14047
  6. [6] B. H. Gross - J. Parson, On the local divisibility of Heegner points. Lang Memorial Volume. Zbl1276.11091
  7. [7] B. Mazur - K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2), 166, No. 2 (2007), pp. 579–612. Zbl1219.11084MR2373150
  8. [8] B. Mazur - K. Rubin - A. Silverberg, Twisting commutative algebraic groups, J. Algebra, 314, No. 1 (2007), pp. 419–438. Zbl1128.14034MR2331769
  9. [9] J. S. Milne, Etale cohomology, Princeton University Press (1980). Zbl0433.14012MR559531
  10. [10] D. Mumford, Abelian varieties, Oxford University Press (1970). Zbl0583.14015MR282985
  11. [11] Jan Nekovár, Selmer complexes, Astérisque, 310 (2006). Zbl1211.11120MR2333680
  12. [12] M. Rapoport, Compactifications de l'Espace de Modules de Hilbert-Blumenthal, Compos. Math., 36 (1978), pp. 255–335. Zbl0386.14006MR515050
  13. [13] M. A. Seveso, Stark-Heegner points and Selmer groups of abelian varieties, PhD Thesis, University of Milan, Federigo Enriques Department of Mathematics. 
  14. [14] M. A. Seveso, Congruences and rationality of Stark-Heegner points, to appear in the Journal of Number Theory, doi: 10.1016/j.jnt.2011.10.001. Zbl1308.11063MR2875348
  15. [15] G. Tamme, Introduction to étale cohomology, Springer-Verlag (1994). Zbl0815.14012MR1317816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.