A Convergence Theorem for Immersions with < > L 2 < >-Bounded Second Fundamental Form

Cheikh Birahim Ndiaye; Reiner Schätzle

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 127, page 235-248
  • ISSN: 0041-8994

How to cite

top

Ndiaye, Cheikh Birahim, and Schätzle, Reiner. "A Convergence Theorem for Immersions with &lt;$&gt;L^2&lt;$&gt;-Bounded Second Fundamental Form." Rendiconti del Seminario Matematico della Università di Padova 127 (2012): 235-248. <http://eudml.org/doc/275121>.

@article{Ndiaye2012,
author = {Ndiaye, Cheikh Birahim, Schätzle, Reiner},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convergence theorem; immersions; Euclidean space; Möbius transformation; varifolds},
language = {eng},
pages = {235-248},
publisher = {Seminario Matematico of the University of Padua},
title = {A Convergence Theorem for Immersions with &lt;$&gt;L^2&lt;$&gt;-Bounded Second Fundamental Form},
url = {http://eudml.org/doc/275121},
volume = {127},
year = {2012},
}

TY - JOUR
AU - Ndiaye, Cheikh Birahim
AU - Schätzle, Reiner
TI - A Convergence Theorem for Immersions with &lt;$&gt;L^2&lt;$&gt;-Bounded Second Fundamental Form
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 127
SP - 235
EP - 248
LA - eng
KW - convergence theorem; immersions; Euclidean space; Möbius transformation; varifolds
UR - http://eudml.org/doc/275121
ER -

References

top
  1. [1] W. Blaschke, Vorlesungen Ueber Differentialgeometrie III, Springer (1929). Zbl55.0422.01
  2. [2] G. Friesecke - R. James - S. Müller, A theorem on geometric rigidity and the derivation on nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55, no. 11 (2002), pp. 1461–1506. Zbl1021.74024MR1916989
  3. [3] S. W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys., 9 (1968), pp. 598–604. Zbl0005.09102JFM58.1412.01
  4. [4] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C28 (1973), pp. 693–703. 
  5. [5] J. E. Hutchinson, Second Fundamental Form for Varifolds and the Existence of Surfaces Minimizing Curvature. Indiana Univ. Math. J., 35, No 1 (1986), pp. 45–71. Zbl0561.53008MR825628
  6. [6] E. Kuwert - R. Schätzle, Removability of point singularity of Willmore surfaces, Ann. of Math., 160, no. 1, pp. 315–357. Zbl1078.53007MR2119722
  7. [7] J. Langer, A compactness theorem for surfaces with L p -bounded second fundamental form, Math. Ann., 270 (1985), pp. 223–234. Zbl0564.58010MR771980
  8. [8] R. Schätzle, The Willmore boundary problem, Cal. Var. PDE, 37 (2010), pp. 275–302. Zbl1188.53006MR2592972
  9. [9] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Center for Mathematical Analysis Austrian National University, Volume 3. Zbl0546.49019MR756417
  10. [10] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., Vol 1, no. 2 (1993), pp. 281–326. Zbl0848.58012MR1243525
  11. [11] G. Thomsen, Über konforme Geometrie I: Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hamburg (1923), pp. 31–56. Zbl49.0530.02JFM49.0530.02
  12. [12] T. J. Willmore, Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia Mat. (N. S) 11B (1965), pp. 493–496. Zbl0171.20001MR202066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.