A Convergence Theorem for Immersions with <>-Bounded Second Fundamental Form
Cheikh Birahim Ndiaye; Reiner Schätzle
Rendiconti del Seminario Matematico della Università di Padova (2012)
- Volume: 127, page 235-248
- ISSN: 0041-8994
Access Full Article
topHow to cite
topNdiaye, Cheikh Birahim, and Schätzle, Reiner. "A Convergence Theorem for Immersions with <$>L^2<$>-Bounded Second Fundamental Form." Rendiconti del Seminario Matematico della Università di Padova 127 (2012): 235-248. <http://eudml.org/doc/275121>.
@article{Ndiaye2012,
author = {Ndiaye, Cheikh Birahim, Schätzle, Reiner},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convergence theorem; immersions; Euclidean space; Möbius transformation; varifolds},
language = {eng},
pages = {235-248},
publisher = {Seminario Matematico of the University of Padua},
title = {A Convergence Theorem for Immersions with <$>L^2<$>-Bounded Second Fundamental Form},
url = {http://eudml.org/doc/275121},
volume = {127},
year = {2012},
}
TY - JOUR
AU - Ndiaye, Cheikh Birahim
AU - Schätzle, Reiner
TI - A Convergence Theorem for Immersions with <$>L^2<$>-Bounded Second Fundamental Form
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 127
SP - 235
EP - 248
LA - eng
KW - convergence theorem; immersions; Euclidean space; Möbius transformation; varifolds
UR - http://eudml.org/doc/275121
ER -
References
top- [1] W. Blaschke, Vorlesungen Ueber Differentialgeometrie III, Springer (1929). Zbl55.0422.01
- [2] G. Friesecke - R. James - S. Müller, A theorem on geometric rigidity and the derivation on nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55, no. 11 (2002), pp. 1461–1506. Zbl1021.74024MR1916989
- [3] S. W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys., 9 (1968), pp. 598–604. Zbl0005.09102JFM58.1412.01
- [4] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C28 (1973), pp. 693–703.
- [5] J. E. Hutchinson, Second Fundamental Form for Varifolds and the Existence of Surfaces Minimizing Curvature. Indiana Univ. Math. J., 35, No 1 (1986), pp. 45–71. Zbl0561.53008MR825628
- [6] E. Kuwert - R. Schätzle, Removability of point singularity of Willmore surfaces, Ann. of Math., 160, no. 1, pp. 315–357. Zbl1078.53007MR2119722
- [7] J. Langer, A compactness theorem for surfaces with -bounded second fundamental form, Math. Ann., 270 (1985), pp. 223–234. Zbl0564.58010MR771980
- [8] R. Schätzle, The Willmore boundary problem, Cal. Var. PDE, 37 (2010), pp. 275–302. Zbl1188.53006MR2592972
- [9] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Center for Mathematical Analysis Austrian National University, Volume 3. Zbl0546.49019MR756417
- [10] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., Vol 1, no. 2 (1993), pp. 281–326. Zbl0848.58012MR1243525
- [11] G. Thomsen, Über konforme Geometrie I: Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hamburg (1923), pp. 31–56. Zbl49.0530.02JFM49.0530.02
- [12] T. J. Willmore, Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia Mat. (N. S) 11B (1965), pp. 493–496. Zbl0171.20001MR202066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.