A geometric approach for convexity in some variational problem in the Gauss space

M. Goldman

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 79-92
  • ISSN: 0041-8994

How to cite

top

Goldman, M.. "A geometric approach for convexity in some variational problem in the Gauss space." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 79-92. <http://eudml.org/doc/275122>.

@article{Goldman2013,
author = {Goldman, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convexity; obstacle problem; regularity; total variation; Gauss space},
language = {eng},
pages = {79-92},
publisher = {Seminario Matematico of the University of Padua},
title = {A geometric approach for convexity in some variational problem in the Gauss space},
url = {http://eudml.org/doc/275122},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Goldman, M.
TI - A geometric approach for convexity in some variational problem in the Gauss space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 79
EP - 92
LA - eng
KW - convexity; obstacle problem; regularity; total variation; Gauss space
UR - http://eudml.org/doc/275122
ER -

References

top
  1. [1] O. Alvarez - J. M. Lasry - P. L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., (9) 76 (1997), pp. 265–288. Zbl0890.49013MR1441987
  2. [2] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Science Publications (2000). Zbl0957.49001MR1857292
  3. [3] F. Andreu-Vaillo - V. Caselles - J. M. Mazòn, Parabolic quasilinear equations minimizing linear growth functionals, Birkhäuser, collection ]Progress in Mathematics^, no. 223 (2004). Zbl1053.35002MR2033382
  4. [4] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Annali di Matematica Pura ed Applicata, vol. 135, no. 1, (1983) pp. 293–318 . Zbl0572.46023MR750538
  5. [5] A. Chambolle - M. Goldman - M. Novaga, Representation, relaxation and convexity for variational problems in Wiener spaces, preprint (2011). MR3035950
  6. [6] M. Giaquinta - G. Modica - J. Souček, Functionals with linear growth in the calculus of variations I & II, Com. Math. Uni. Carolinae, 20 (1979), pp.143–171. Zbl0409.49006MR526154
  7. [7] D. Gilbarg - N. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag (2001). Zbl1042.35002MR1814364
  8. [8] E. Giusti, Minimal Surfaces and functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser (1984). Zbl0545.49018MR775682
  9. [9] E. Giusti, On the equation of surfaces of Prescribed mean curvature, Inventiones Mathematicae, 46 (1978), pp.111–137. Zbl0381.35035MR487722
  10. [10] N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603–614. Zbl0481.35024MR703287
  11. [11] M. Miranda, Frontiere minimali con ostacoli, Annali dell'Università di Ferrara, vol. 16, no. 1 (1971), pp. 29–37. Zbl0266.49036MR301617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.