# A geometric approach for convexity in some variational problem in the Gauss space

Rendiconti del Seminario Matematico della Università di Padova (2013)

- Volume: 129, page 79-92
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topGoldman, M.. "A geometric approach for convexity in some variational problem in the Gauss space." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 79-92. <http://eudml.org/doc/275122>.

@article{Goldman2013,

author = {Goldman, M.},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {convexity; obstacle problem; regularity; total variation; Gauss space},

language = {eng},

pages = {79-92},

publisher = {Seminario Matematico of the University of Padua},

title = {A geometric approach for convexity in some variational problem in the Gauss space},

url = {http://eudml.org/doc/275122},

volume = {129},

year = {2013},

}

TY - JOUR

AU - Goldman, M.

TI - A geometric approach for convexity in some variational problem in the Gauss space

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2013

PB - Seminario Matematico of the University of Padua

VL - 129

SP - 79

EP - 92

LA - eng

KW - convexity; obstacle problem; regularity; total variation; Gauss space

UR - http://eudml.org/doc/275122

ER -

## References

top- [1] O. Alvarez - J. M. Lasry - P. L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., (9) 76 (1997), pp. 265–288. Zbl0890.49013MR1441987
- [2] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Science Publications (2000). Zbl0957.49001MR1857292
- [3] F. Andreu-Vaillo - V. Caselles - J. M. Mazòn, Parabolic quasilinear equations minimizing linear growth functionals, Birkhäuser, collection ]Progress in Mathematics^, no. 223 (2004). Zbl1053.35002MR2033382
- [4] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Annali di Matematica Pura ed Applicata, vol. 135, no. 1, (1983) pp. 293–318 . Zbl0572.46023MR750538
- [5] A. Chambolle - M. Goldman - M. Novaga, Representation, relaxation and convexity for variational problems in Wiener spaces, preprint (2011). MR3035950
- [6] M. Giaquinta - G. Modica - J. Souček, Functionals with linear growth in the calculus of variations I & II, Com. Math. Uni. Carolinae, 20 (1979), pp.143–171. Zbl0409.49006MR526154
- [7] D. Gilbarg - N. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag (2001). Zbl1042.35002MR1814364
- [8] E. Giusti, Minimal Surfaces and functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser (1984). Zbl0545.49018MR775682
- [9] E. Giusti, On the equation of surfaces of Prescribed mean curvature, Inventiones Mathematicae, 46 (1978), pp.111–137. Zbl0381.35035MR487722
- [10] N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603–614. Zbl0481.35024MR703287
- [11] M. Miranda, Frontiere minimali con ostacoli, Annali dell'Università di Ferrara, vol. 16, no. 1 (1971), pp. 29–37. Zbl0266.49036MR301617

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.