A geometric approach for convexity in some variational problem in the Gauss space
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 79-92
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGoldman, M.. "A geometric approach for convexity in some variational problem in the Gauss space." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 79-92. <http://eudml.org/doc/275122>.
@article{Goldman2013,
author = {Goldman, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convexity; obstacle problem; regularity; total variation; Gauss space},
language = {eng},
pages = {79-92},
publisher = {Seminario Matematico of the University of Padua},
title = {A geometric approach for convexity in some variational problem in the Gauss space},
url = {http://eudml.org/doc/275122},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Goldman, M.
TI - A geometric approach for convexity in some variational problem in the Gauss space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 79
EP - 92
LA - eng
KW - convexity; obstacle problem; regularity; total variation; Gauss space
UR - http://eudml.org/doc/275122
ER -
References
top- [1] O. Alvarez - J. M. Lasry - P. L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., (9) 76 (1997), pp. 265–288. Zbl0890.49013MR1441987
- [2] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Science Publications (2000). Zbl0957.49001MR1857292
- [3] F. Andreu-Vaillo - V. Caselles - J. M. Mazòn, Parabolic quasilinear equations minimizing linear growth functionals, Birkhäuser, collection ]Progress in Mathematics^, no. 223 (2004). Zbl1053.35002MR2033382
- [4] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Annali di Matematica Pura ed Applicata, vol. 135, no. 1, (1983) pp. 293–318 . Zbl0572.46023MR750538
- [5] A. Chambolle - M. Goldman - M. Novaga, Representation, relaxation and convexity for variational problems in Wiener spaces, preprint (2011). MR3035950
- [6] M. Giaquinta - G. Modica - J. Souček, Functionals with linear growth in the calculus of variations I & II, Com. Math. Uni. Carolinae, 20 (1979), pp.143–171. Zbl0409.49006MR526154
- [7] D. Gilbarg - N. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag (2001). Zbl1042.35002MR1814364
- [8] E. Giusti, Minimal Surfaces and functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser (1984). Zbl0545.49018MR775682
- [9] E. Giusti, On the equation of surfaces of Prescribed mean curvature, Inventiones Mathematicae, 46 (1978), pp.111–137. Zbl0381.35035MR487722
- [10] N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603–614. Zbl0481.35024MR703287
- [11] M. Miranda, Frontiere minimali con ostacoli, Annali dell'Università di Ferrara, vol. 16, no. 1 (1971), pp. 29–37. Zbl0266.49036MR301617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.