Riccati Differential Equation for Hypergeometric Differential Equation

Takahiro Nakagawa

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 127, page 179-192
  • ISSN: 0041-8994

How to cite

top

Nakagawa, Takahiro. "Riccati Differential Equation for Hypergeometric Differential Equation." Rendiconti del Seminario Matematico della Università di Padova 127 (2012): 179-192. <http://eudml.org/doc/275123>.

@article{Nakagawa2012,
author = {Nakagawa, Takahiro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Grothendieck conjecture; algebraic solution to differential equations; Riccati differential equations; hypergeometric differential equations},
language = {eng},
pages = {179-192},
publisher = {Seminario Matematico of the University of Padua},
title = {Riccati Differential Equation for Hypergeometric Differential Equation},
url = {http://eudml.org/doc/275123},
volume = {127},
year = {2012},
}

TY - JOUR
AU - Nakagawa, Takahiro
TI - Riccati Differential Equation for Hypergeometric Differential Equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 127
SP - 179
EP - 192
LA - eng
KW - Grothendieck conjecture; algebraic solution to differential equations; Riccati differential equations; hypergeometric differential equations
UR - http://eudml.org/doc/275123
ER -

References

top
  1. [Andre] Y. André, Dwork’s conjecture on the logarithmic growth of solutions of p -adic differential equations, Compos. Math., 144 (2008), pp. 484–494. Zbl1161.12002MR2406119
  2. [Baldassarri] F. Baldassarri, Continuity of the radius of convergence of differential equations on p-adic analytic curves, Invent. Math., 182, (3) (2010), pp. 513–584. Zbl1221.14027MR2737705
  3. [C-T] B. Chiarellotto - N. Tsuzuki, Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations, J. Inst. Math. Jussieu, 8 (2009), pp. 465–505. Zbl1176.12006MR2516304
  4. [Christol] G. Christol, Modules différentiels et équations différentielles p -adiques, Queen's Papers in Pure and Appl. Math. 66, Queen's University, Kingston, ON, 1983. Zbl0589.12020MR772749
  5. [Dwork1] B. M. Dwork, On p-adic differential equations II, Annals of Math., 98, (2) (1973), pp. 366–376. Zbl0304.14015MR572253
  6. [Dwork2] B. M. Dwork, Lectures on p -adic differential equations, Grundlehren Math. Wiss. 253, Springer- Verlag, New York-Berlin, 1982. Zbl0502.12021MR678093
  7. [DGS] B. Dwork - G. Gerotto - F. Sullivan, An Introduction to G -Functions, Annals of Math. Studies 133, Princeton University Press, Princeton, 1994. Zbl0830.12004MR1274045
  8. [D-R] B. M. Dwork - P. Robba, On Ordinary Linear p -Adic Differential Equations, T.A.M.S., 231 (1977), pp. 1–46. Zbl0375.34010MR447247
  9. [Kedlaya] K. Kedlaya, p -adic differential equations, Cambridge University Press, Cambridge (2010). Zbl1213.12009MR2663480
  10. [Put] M. van der Put, Reduction modulo p of differential equations. Indag. Math. N. S., 7, (3) (1996), pp. 367–387. Zbl0865.12007MR1621401
  11. [Put2] M. van der Put, Grothendieck’s conjecture for the Risch equation y ' = a y + b . Indag. Math. (N.S.), 12 (2001), pp. 113–124. Zbl1004.12005MR1908143
  12. [Put3] M. van der Put, Bounded p -adic differential equations Circumspice, Nijmegen, 2001. 
  13. [PS] M. van der Put - M. Singer, Galois theory of linear differential equations. Grundlehren der Mathematischen Wissenschaften 328. Springer 2003. Zbl1036.12008MR1960772
  14. [R-C] P. Robba - G. Christol, Équation différentielles p -adiques. Application aux sommes exponentielles. Actualités Math., Hermann, Paris, 1994. Zbl0868.12006MR1411447
  15. [Robba] P. Robba, On the index of p -adic differential operators I, Ann. of Math. (2), 101 (1975), pp. 280–316. Zbl0316.12102MR364243
  16. [Young] P. Young, Radii of p -adic convergence of generic solutions of homogeneous linear differential equations. Thesis (Ph.D.)-Oklahoma State University (1988), pp. 71. MR2637315

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.