Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces

Pawel Sosna

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 130, page 203-214
  • ISSN: 0041-8994

How to cite

top

Sosna, Pawel. "Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 203-214. <http://eudml.org/doc/275126>.

@article{Sosna2013,
author = {Sosna, Pawel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {derived categories; Fourier-Mukai partners; bielliptic surfaces; Enriques surfaces},
language = {eng},
pages = {203-214},
publisher = {Seminario Matematico of the University of Padua},
title = {Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces},
url = {http://eudml.org/doc/275126},
volume = {130},
year = {2013},
}

TY - JOUR
AU - Sosna, Pawel
TI - Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 203
EP - 214
LA - eng
KW - derived categories; Fourier-Mukai partners; bielliptic surfaces; Enriques surfaces
UR - http://eudml.org/doc/275126
ER -

References

top
  1. [1] W. Barth - K. Hulek - C. Peters - A. van de Ven, Compact complex surfaces, Springer, Berlin (2004). Zbl1036.14016MR2030225
  2. [2] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J.141 (2008), pp. 241–291. Zbl1138.14022MR2376815
  3. [3] T. Bridgeland - A. Maciocia, Complex surfaces with equivalent derived categories, Math. Z.236 (2001), pp. 677–697. Zbl1081.14023MR1827500
  4. [4] J. H. Conway - N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Springer, New York, 1999. Zbl0915.52003MR1662447
  5. [5] S. Hosono - B. H. Lian - K. Oguiso - S.-T. Yau, Kummer structures on a K3 surface: An old question of T. Shioda, Duke Math. J.120 (2003), pp. 635–647. Zbl1051.14046MR2030099
  6. [6] S. Hosono - B. H. Lian - K. Oguiso - S.-T. Yau, Fourier-Mukai numbers of a K3 surface, In: Algebraic structures and moduli spaces, pp. 177–192. Amer. Math. Soc., Providence, RI (2004). Zbl1076.14045MR2096145
  7. [7] D. Huybrechts - P. Stellari, Equivalences of twisted K3 surfaces, Math. Ann.332 (2005), pp. 901–936. Zbl1092.14047MR2179782
  8. [8] J. H. Keum, Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J.118 (1990), pp. 99–110. MR1060704
  9. [9] S. Ma, Twisted Fourier-Mukai number of a K3 surface, Trans. Amer. Math. Soc.362 (2010), pp. 537–552. Zbl1184.14068MR2550163
  10. [10] E. Macr㇬ - S. Mehrotra - P. Stellari, Inducing stability conditions, J. Alg. Geom. 18 (2009), pp. 605–649. Zbl1175.14010MR2524593
  11. [11] S. Mukai, Duality between D( X ) and D( X ^ ) and its application to Picard sheaves, Nagoya Math. J.81 (1981), pp. 153–175. MR607081
  12. [12] S. Mukai, On the moduli space of bundles on K3 surfaces, I, in: Vector bundles on algebraic varieties (Bombay, 1984), pp. 341–413, Tata Inst. Fund. Res., Bombay (1987). MR893604
  13. [13] Y. Namikawa, Periods of Enriques surfaces, Math. Ann.270 (1985), pp. 201–222. Zbl0536.14024MR771979
  14. [14] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv.14 (1980), pp. 103–167. Zbl0427.10014MR525944
  15. [15] K. Oguiso - S. Schröer, Enriques manifolds, J. Reine Angew. Math. (to appear). MR2863907
  16. [16] H. Ohashi, On the number of Enriques quotients of a K3 surface, Publ. Res. Inst. Math. Sci.43 (2007), pp. 181–200. Zbl1133.14038MR2319542
  17. [17] D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci.84 (1997), pp. 1361–1381. Zbl0938.14019MR1465519
  18. [18] D. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Math.66 (2002), pp. 569–594. Zbl1031.18007MR1921811
  19. [19] D. Ploog, Equivariant autoequivalences for finite group actions, Adv. Math.216 (2007), pp. 62–74. Zbl1167.14031MR2353249
  20. [20] T. Shioda, Some remarks on abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA24 (1977), pp. 11–21. Zbl0406.14023MR450289
  21. [21] T. Shioda, The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA25 (1977), pp. 47–59. Zbl0405.14021MR480530
  22. [22] T. Shioda - N. Mitani, Singular abelian surfaces and binary quadratic forms, In: Classification of algebraic varieties and compact complex manifolds, Springer, Berlin (1974), pp. 259–287. MR382289
  23. [23] P. Stellari, Derived categories and Kummer varieties, Math. Z.256 (2007), pp. 425–441. Zbl1138.18006MR2289881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.