On Gorenstein flat preenvelopes of complexes

Gang Yang; Zhongkui Liu; Li Liang

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 171-188
  • ISSN: 0041-8994

How to cite

top

Yang, Gang, Liu, Zhongkui, and Liang, Li. "On Gorenstein flat preenvelopes of complexes." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 171-188. <http://eudml.org/doc/275129>.

@article{Yang2013,
author = {Yang, Gang, Liu, Zhongkui, Liang, Li},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {preenvelopes; envelopes; Gorenstein injective modules; Gorenstein injective complexes; FP-injective modules; Gorenstein flat modules; Gorenstein flat complexes},
language = {eng},
pages = {171-188},
publisher = {Seminario Matematico of the University of Padua},
title = {On Gorenstein flat preenvelopes of complexes},
url = {http://eudml.org/doc/275129},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Yang, Gang
AU - Liu, Zhongkui
AU - Liang, Li
TI - On Gorenstein flat preenvelopes of complexes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 171
EP - 188
LA - eng
KW - preenvelopes; envelopes; Gorenstein injective modules; Gorenstein injective complexes; FP-injective modules; Gorenstein flat modules; Gorenstein flat complexes
UR - http://eudml.org/doc/275129
ER -

References

top
  1. [1] S. T. Aldrich - E. E. Enochs - J. R. Garc ía Rozas - L. Oyonarte, Covers and envelopes in Groththendieck categories. Flat cover of complexes with applications, J. Algebra, 243 (2001), pp. 615–630. MR1850650
  2. [2] M. Auslander - I. Reiten, Applications of contravariantly finite sub-categories, Adv. Math.86 (1991), pp. 111–52. MR1097029
  3. [3] M. Auslander - S. O. Smalø, Preprojective modules over artin algebras, J. Algebra, 66 (1980), pp. 61–122. Zbl0477.16013MR591246
  4. [4] H. Bass, Finitistic dimension and a homological characterization of semiprimary rings, Trans. Amer. Math. Soc.95 (1960), pp. 466–488. Zbl0094.02201MR157984
  5. [5] L. W. Christensen - A. Frankild - H. Holm, On Gorenstein projective, injective and flat dimensions-A functor description with applications, J. Algebra, 302 (2006), pp. 231–279. Zbl1104.13008MR2236602
  6. [6] B. Eckmann - A. Schopf, Ueber injektive moduln. Arch. Math. 4 (2) (1953), pp. 75–78. Zbl0050.25904MR55978
  7. [7] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math.39 (1981), pp. 33–38. Zbl0464.16019MR636889
  8. [8] E. E. Enochs - A. Estrada - A. Iacob, Gorenstein projective and flat complexes over noetherian rings, Math. Nachr.7 (2012), pp. 834–851. Zbl1246.18006MR2924516
  9. [9] E. E. Enochs - Z. Y. Huang, Injective envelopes and (Gorenstein) flat covers, Algebr. Represent. Theor.15 (2012), pp. 1131–1145. Zbl1271.16009MR2994019
  10. [10] E. E. Enochs - O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics, Vol. 30, W. de Gruyter, Berlin 2000. Zbl0952.13001MR1753146
  11. [11] E. E. Enochs - O. M. G. Jenda - J. A. López-Ramos, The existence of Gorenstein flat covers, Math. Scand.94 (2004), pp. 46–62. Zbl1061.16003MR2032335
  12. [12] E. E. Enochs - J. A. López-Ramos, Kaplansky classes, Rend Sem. Mat. Univ. Padova, 107 (2002), pp. 67–79. MR1926201
  13. [13] J. Gillespie, The flat model structure on Ch2004), pp. 3369–3390. Zbl1056.55011MR2052954
  14. [14] J. R. Garc ía Rozas, Covers and envelopes in the category of complexes of modules. Boca Raton London New York Washington, D.C. 1999. MR1693036
  15. [15] R. Göbel - J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics, Vol. 41, W. de Gruyter, Berlin-New York 2006. Zbl1121.16002
  16. [16] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), pp. 167–193. Zbl1050.16003MR2038564
  17. [17] Z. K. Liu - C. X. Zhang, Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 321 (2009), pp. 1546–1554. Zbl1185.16007MR2494408
  18. [18] R. B. Warfiel, Purity and algebraic compactness for modules, Pacific J. Math.28 (1969), pp. 699–719. Zbl0172.04801MR242885
  19. [19] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (2) (1970), pp. 323–329. Zbl0194.06602MR258888
  20. [20] J. Stovicek, Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math.25 (2013), pp. 193–219. Zbl1262.18010MR3010854
  21. [21] G. Yang - Z. K. Liu, Stability of Gorenstein flat categories, Glasgow Math. J. 54 (1) (2012), pp. 177–191. Zbl1248.16007MR2862396

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.