On Gorenstein flat preenvelopes of complexes
Gang Yang; Zhongkui Liu; Li Liang
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 171-188
- ISSN: 0041-8994
Access Full Article
topHow to cite
topYang, Gang, Liu, Zhongkui, and Liang, Li. "On Gorenstein flat preenvelopes of complexes." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 171-188. <http://eudml.org/doc/275129>.
@article{Yang2013,
author = {Yang, Gang, Liu, Zhongkui, Liang, Li},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {preenvelopes; envelopes; Gorenstein injective modules; Gorenstein injective complexes; FP-injective modules; Gorenstein flat modules; Gorenstein flat complexes},
language = {eng},
pages = {171-188},
publisher = {Seminario Matematico of the University of Padua},
title = {On Gorenstein flat preenvelopes of complexes},
url = {http://eudml.org/doc/275129},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Yang, Gang
AU - Liu, Zhongkui
AU - Liang, Li
TI - On Gorenstein flat preenvelopes of complexes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 171
EP - 188
LA - eng
KW - preenvelopes; envelopes; Gorenstein injective modules; Gorenstein injective complexes; FP-injective modules; Gorenstein flat modules; Gorenstein flat complexes
UR - http://eudml.org/doc/275129
ER -
References
top- [1] S. T. Aldrich - E. E. Enochs - J. R. Garc ía Rozas - L. Oyonarte, Covers and envelopes in Groththendieck categories. Flat cover of complexes with applications, J. Algebra, 243 (2001), pp. 615–630. MR1850650
- [2] M. Auslander - I. Reiten, Applications of contravariantly finite sub-categories, Adv. Math.86 (1991), pp. 111–52. MR1097029
- [3] M. Auslander - S. O. Smalø, Preprojective modules over artin algebras, J. Algebra, 66 (1980), pp. 61–122. Zbl0477.16013MR591246
- [4] H. Bass, Finitistic dimension and a homological characterization of semiprimary rings, Trans. Amer. Math. Soc.95 (1960), pp. 466–488. Zbl0094.02201MR157984
- [5] L. W. Christensen - A. Frankild - H. Holm, On Gorenstein projective, injective and flat dimensions-A functor description with applications, J. Algebra, 302 (2006), pp. 231–279. Zbl1104.13008MR2236602
- [6] B. Eckmann - A. Schopf, Ueber injektive moduln. Arch. Math. 4 (2) (1953), pp. 75–78. Zbl0050.25904MR55978
- [7] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math.39 (1981), pp. 33–38. Zbl0464.16019MR636889
- [8] E. E. Enochs - A. Estrada - A. Iacob, Gorenstein projective and flat complexes over noetherian rings, Math. Nachr.7 (2012), pp. 834–851. Zbl1246.18006MR2924516
- [9] E. E. Enochs - Z. Y. Huang, Injective envelopes and (Gorenstein) flat covers, Algebr. Represent. Theor.15 (2012), pp. 1131–1145. Zbl1271.16009MR2994019
- [10] E. E. Enochs - O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics, Vol. 30, W. de Gruyter, Berlin 2000. Zbl0952.13001MR1753146
- [11] E. E. Enochs - O. M. G. Jenda - J. A. López-Ramos, The existence of Gorenstein flat covers, Math. Scand.94 (2004), pp. 46–62. Zbl1061.16003MR2032335
- [12] E. E. Enochs - J. A. López-Ramos, Kaplansky classes, Rend Sem. Mat. Univ. Padova, 107 (2002), pp. 67–79. MR1926201
- [13] J. Gillespie, The flat model structure on Ch2004), pp. 3369–3390. Zbl1056.55011MR2052954
- [14] J. R. Garc ía Rozas, Covers and envelopes in the category of complexes of modules. Boca Raton London New York Washington, D.C. 1999. MR1693036
- [15] R. Göbel - J. Trlifaj, Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics, Vol. 41, W. de Gruyter, Berlin-New York 2006. Zbl1121.16002
- [16] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), pp. 167–193. Zbl1050.16003MR2038564
- [17] Z. K. Liu - C. X. Zhang, Gorenstein injective complexes of modules over Noetherian rings, J. Algebra, 321 (2009), pp. 1546–1554. Zbl1185.16007MR2494408
- [18] R. B. Warfiel, Purity and algebraic compactness for modules, Pacific J. Math.28 (1969), pp. 699–719. Zbl0172.04801MR242885
- [19] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (2) (1970), pp. 323–329. Zbl0194.06602MR258888
- [20] J. Stovicek, Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math.25 (2013), pp. 193–219. Zbl1262.18010MR3010854
- [21] G. Yang - Z. K. Liu, Stability of Gorenstein flat categories, Glasgow Math. J. 54 (1) (2012), pp. 177–191. Zbl1248.16007MR2862396
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.