Automorfismi involutori di p-gruppi finiti

Egle Bettio; Giorgio Busetto; Jabara Enrico

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 1-16
  • ISSN: 0041-8994

How to cite

top

Bettio, Egle, Busetto, Giorgio, and Enrico, Jabara. "Automorfismi involutori di p-gruppi finiti." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 1-16. <http://eudml.org/doc/275143>.

@article{Bettio2013,
author = {Bettio, Egle, Busetto, Giorgio, Enrico, Jabara},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite -groups; involutive automorphisms; nilpotency classes; derived lengths},
language = {ita},
pages = {1-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Automorfismi involutori di p-gruppi finiti},
url = {http://eudml.org/doc/275143},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Bettio, Egle
AU - Busetto, Giorgio
AU - Enrico, Jabara
TI - Automorfismi involutori di p-gruppi finiti
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 1
EP - 16
LA - ita
KW - finite -groups; involutive automorphisms; nilpotency classes; derived lengths
UR - http://eudml.org/doc/275143
ER -

References

top
  1. [1] L. Beneteau, Les groupes de Fischer au sens restreint: dimension et classe de nilpotence du dérivé. C. R. Acad, Sc. Paris 285 (1977), pp. 693–695. Zbl0362.20025MR457571
  2. [2] L. Beneteau, Free commutative Moufang loops on anticommutative graded rings. J. Algebra67 (1980), pp. 1–35. Zbl0451.20063MR595016
  3. [3] T. S. Bolis, Every finitely generated Fischer group is finite. Proc. Amer. Math. Soc.42 (1974), pp. 387–389. Zbl0251.20027MR338183
  4. [4] R. H. Bruck, An open question concerning Moufang loops. Arch. Math.10 (1959), pp. 419–421. Zbl0089.24902MR144996
  5. [5] R. H. Bruck, A survey of binary sistems. Springer - Verlag, New York - Heidelberg - Berlin II ed. (1968). 
  6. [6] B. Fischer, Distributive quasigruppen endlicher ordnung. Math. Z.83 (1964), pp. 267–303. Zbl0119.26201MR160845
  7. [7] G. Glauberman, On loops of odd order. J. Algebra1 (1964), pp. 374–396. Zbl0123.01502MR175991
  8. [8] D. Gorenstein, Finite groups. Harper & Row, New York (1968). MR231903
  9. [9] M. Hall jr., Solution of the Burnside problem for exponent six. Illinois J. Math. 2 (1958), pp. 764–786. Zbl0083.24801MR102554
  10. [10] M. Hall jr., Automorphisms of Steiner triple systems. Proc. Symp. Pure Math. VI Amer. Math. Soc. Providence R. I. (1962), pp. 47–66. MR133054
  11. [11] J. P. Malbos, Sur la classe de nilpotence des boucles commutatives de Moufang et des espaces médiaux. C. R. Acad. Sci. Paris Sér. A-B 287 (1978), pp. A691–A693. Zbl0409.20051MR515667
  12. [12] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic. North-Holland, Amsterdam - London - New York (1968). MR833513
  13. [13] H. Meier-Wunderli, Metabelsche Gruppen. Comm. Math. Helvetici25 (1951), pp. 1–10. MR40296
  14. [14] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Springer - Verlag, New York - Heidelberg - Berlin (1972). Zbl0243.20032
  15. [15] D. J. S. Robinson, A course in the theory of groups. Springer - Verlag, New York - Heidelberg - Berlin (1982). Zbl0483.20001MR648604
  16. [16] R. Scapellato, Sur les groupes engendrés par une classe de p-involutions. Arch. Mat. (Basel) 56 (1991), pp. 5–12. Zbl0685.20016MR1081996
  17. [17] J. H. D. Smith, Finite distributive quasigroups. Math. Proc. Camb. Phil. Soc.80 (1976), pp. 37–41. Zbl0338.20098MR419664
  18. [18] J. H. D. Smith, On the nilpotence class of commutative Moufang loops. Math. Proc. Camb. Phil. Soc.84 (1978), pp. 387–404. Zbl0393.20054MR498931
  19. [GAP] The GAP Group, GAP – Groups, Algorithms and Programming. Version 4.4.12 (2008). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.