Automorfismi involutori di p-gruppi finiti
Egle Bettio; Giorgio Busetto; Jabara Enrico
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 129, page 1-16
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBettio, Egle, Busetto, Giorgio, and Enrico, Jabara. "Automorfismi involutori di p-gruppi finiti." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 1-16. <http://eudml.org/doc/275143>.
@article{Bettio2013,
author = {Bettio, Egle, Busetto, Giorgio, Enrico, Jabara},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite -groups; involutive automorphisms; nilpotency classes; derived lengths},
language = {ita},
pages = {1-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Automorfismi involutori di p-gruppi finiti},
url = {http://eudml.org/doc/275143},
volume = {129},
year = {2013},
}
TY - JOUR
AU - Bettio, Egle
AU - Busetto, Giorgio
AU - Enrico, Jabara
TI - Automorfismi involutori di p-gruppi finiti
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 1
EP - 16
LA - ita
KW - finite -groups; involutive automorphisms; nilpotency classes; derived lengths
UR - http://eudml.org/doc/275143
ER -
References
top- [1] L. Beneteau, Les groupes de Fischer au sens restreint: dimension et classe de nilpotence du dérivé. C. R. Acad, Sc. Paris 285 (1977), pp. 693–695. Zbl0362.20025MR457571
- [2] L. Beneteau, Free commutative Moufang loops on anticommutative graded rings. J. Algebra67 (1980), pp. 1–35. Zbl0451.20063MR595016
- [3] T. S. Bolis, Every finitely generated Fischer group is finite. Proc. Amer. Math. Soc.42 (1974), pp. 387–389. Zbl0251.20027MR338183
- [4] R. H. Bruck, An open question concerning Moufang loops. Arch. Math.10 (1959), pp. 419–421. Zbl0089.24902MR144996
- [5] R. H. Bruck, A survey of binary sistems. Springer - Verlag, New York - Heidelberg - Berlin II ed. (1968).
- [6] B. Fischer, Distributive quasigruppen endlicher ordnung. Math. Z.83 (1964), pp. 267–303. Zbl0119.26201MR160845
- [7] G. Glauberman, On loops of odd order. J. Algebra1 (1964), pp. 374–396. Zbl0123.01502MR175991
- [8] D. Gorenstein, Finite groups. Harper & Row, New York (1968). MR231903
- [9] M. Hall jr., Solution of the Burnside problem for exponent six. Illinois J. Math. 2 (1958), pp. 764–786. Zbl0083.24801MR102554
- [10] M. Hall jr., Automorphisms of Steiner triple systems. Proc. Symp. Pure Math. VI Amer. Math. Soc. Providence R. I. (1962), pp. 47–66. MR133054
- [11] J. P. Malbos, Sur la classe de nilpotence des boucles commutatives de Moufang et des espaces médiaux. C. R. Acad. Sci. Paris Sér. A-B 287 (1978), pp. A691–A693. Zbl0409.20051MR515667
- [12] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic. North-Holland, Amsterdam - London - New York (1968). MR833513
- [13] H. Meier-Wunderli, Metabelsche Gruppen. Comm. Math. Helvetici25 (1951), pp. 1–10. MR40296
- [14] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Springer - Verlag, New York - Heidelberg - Berlin (1972). Zbl0243.20032
- [15] D. J. S. Robinson, A course in the theory of groups. Springer - Verlag, New York - Heidelberg - Berlin (1982). Zbl0483.20001MR648604
- [16] R. Scapellato, Sur les groupes engendrés par une classe de p-involutions. Arch. Mat. (Basel) 56 (1991), pp. 5–12. Zbl0685.20016MR1081996
- [17] J. H. D. Smith, Finite distributive quasigroups. Math. Proc. Camb. Phil. Soc.80 (1976), pp. 37–41. Zbl0338.20098MR419664
- [18] J. H. D. Smith, On the nilpotence class of commutative Moufang loops. Math. Proc. Camb. Phil. Soc.84 (1978), pp. 387–404. Zbl0393.20054MR498931
- [GAP] The GAP Group, GAP – Groups, Algorithms and Programming. Version 4.4.12 (2008).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.