Discriminants minimaux successifs pour les corps de nombres algébriques totalement réels de degré n

Elisabeth Gallou

Séminaire de théorie des nombres de Grenoble (1975-1977)

  • Volume: 5, page 1-29

How to cite

top

Gallou, Elisabeth. "Discriminants minimaux successifs pour les corps de nombres algébriques totalement réels de degré $n$." Séminaire de théorie des nombres de Grenoble 5 (1975-1977): 1-29. <http://eudml.org/doc/275198>.

@article{Gallou1975-1977,
author = {Gallou, Elisabeth},
journal = {Séminaire de théorie des nombres de Grenoble},
language = {fre},
pages = {1-29},
publisher = {Institut des Mathématiques Pures - Université Scientifique et Médicale de Grenoble},
title = {Discriminants minimaux successifs pour les corps de nombres algébriques totalement réels de degré $n$},
url = {http://eudml.org/doc/275198},
volume = {5},
year = {1975-1977},
}

TY - JOUR
AU - Gallou, Elisabeth
TI - Discriminants minimaux successifs pour les corps de nombres algébriques totalement réels de degré $n$
JO - Séminaire de théorie des nombres de Grenoble
PY - 1975-1977
PB - Institut des Mathématiques Pures - Université Scientifique et Médicale de Grenoble
VL - 5
SP - 1
EP - 29
LA - fre
UR - http://eudml.org/doc/275198
ER -

References

top
  1. [1] Berwick - Integral Bases. Camb. Tracts on Maths, n ° 22. JFM53.0142.01
  2. [2] Cassels - An introduction to the geometry of numbers. Zbl0866.11041
  3. [3] Cohn - Note on fields of small discriminant. Proc. Amer. Math. Soc.3 (1952), pp. 713-714. Zbl0048.02603MR49946
  4. [4] Davenport - The product of n homogeneous linear forms. Indag Math.8 (1946), pp. 524-541. Zbl0060.11907
  5. [5] Gantmacher - Théorie des matrices, t. 2, Dunod. Zbl0136.00410
  6. [6] Godwin - The determination of fields of small discriminant with a given subfield. Math. Scand.6 (1958), pp. 40-46. Zbl0085.02601MR105404
  7. [7] Hunter - The minimum discriminant of quintic fields. Proc. Glasgow Math. Association, vol. III (1957). Zbl0080.03003
  8. [8] Kaur - The minimum discriminant of sixth degree totally real algebric number fields. Journal of the Indian Math. Soc. (1970), pp. 123-134. Zbl0228.12001MR292793
  9. [9] Liang et Zassenhaus - The minimum discriminant of sixth degree totally complex algebraic number fields. Journal of number theory, 9 (1977) , pp. 16-35. Zbl0345.12005MR427270
  10. [10] Martinet - Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p. Zbl0165.06502
  11. [11] Pohst - The minimum discriminant of seventh degree totally real algebraic number fields. Journal of number theory (à paraître). Zbl0373.12006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.