Systole growth for finite area hyperbolic surfaces

Florent Balacheff; Eran Makover; Hugo Parlier

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 1, page 175-180
  • ISSN: 0240-2963

Abstract

top
In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature ( g , n ) is greater than a function that grows logarithmically in terms of the ratio g / n .

How to cite

top

Balacheff, Florent, Makover, Eran, and Parlier, Hugo. "Systole growth for finite area hyperbolic surfaces." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 175-180. <http://eudml.org/doc/275308>.

@article{Balacheff2014,
abstract = {In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature $(g,n)$ is greater than a function that grows logarithmically in terms of the ratio $g/n$.},
author = {Balacheff, Florent, Makover, Eran, Parlier, Hugo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Rieman surface; systole function},
language = {eng},
number = {1},
pages = {175-180},
publisher = {Université Paul Sabatier, Toulouse},
title = {Systole growth for finite area hyperbolic surfaces},
url = {http://eudml.org/doc/275308},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Balacheff, Florent
AU - Makover, Eran
AU - Parlier, Hugo
TI - Systole growth for finite area hyperbolic surfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 175
EP - 180
AB - In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature $(g,n)$ is greater than a function that grows logarithmically in terms of the ratio $g/n$.
LA - eng
KW - Rieman surface; systole function
UR - http://eudml.org/doc/275308
ER -

References

top
  1. Adams (C.).— Maximal cusps, collars , and systoles in hyperbolic surfaces. Indiana Math. J. 47, no. 2, p. 419-437 (1998). Zbl0912.53026MR1647904
  2. Beardon (A.), Minda (D.).— The hyperbolic metric and geometric function theory. Quasiconformal mappings and their applications, p. 9-56, Narosa, New Delhi (2007). Zbl1208.30001MR2492498
  3. Buser (P.), Sarnak (P.).— On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane. Invent. Math. 117, no. 1, p. 27-56 (1994). Zbl0814.14033MR1269424
  4. Farb (B.), Margalit (D.).— A primer on mapping class groups. To appear in Princeton Mathematical Series. Zbl1245.57002MR2850125
  5. Mumford (D.).— A remark on a Mahler’s compactness theorem. Proc. AMS 28, no. 1, p. 289-294 (1971). Zbl0215.23202MR276410
  6. Schmutz (P.).— Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal. 4, p. 207-218 (1994). Zbl0804.32010MR1277506

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.