Systole growth for finite area hyperbolic surfaces
Florent Balacheff; Eran Makover; Hugo Parlier
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 1, page 175-180
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Adams (C.).— Maximal cusps, collars , and systoles in hyperbolic surfaces. Indiana Math. J. 47, no. 2, p. 419-437 (1998). Zbl0912.53026MR1647904
- Beardon (A.), Minda (D.).— The hyperbolic metric and geometric function theory. Quasiconformal mappings and their applications, p. 9-56, Narosa, New Delhi (2007). Zbl1208.30001MR2492498
- Buser (P.), Sarnak (P.).— On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane. Invent. Math. 117, no. 1, p. 27-56 (1994). Zbl0814.14033MR1269424
- Farb (B.), Margalit (D.).— A primer on mapping class groups. To appear in Princeton Mathematical Series. Zbl1245.57002MR2850125
- Mumford (D.).— A remark on a Mahler’s compactness theorem. Proc. AMS 28, no. 1, p. 289-294 (1971). Zbl0215.23202MR276410
- Schmutz (P.).— Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal. 4, p. 207-218 (1994). Zbl0804.32010MR1277506