[unknown]

Liana David[1]

  • [1] “Simion Stoilow” Institute of Mathematics of the Romanian Academy Research Unit no. 4 Calea Grivitei 21 Sector 1, Bucharest (Romania)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-28
  • ISSN: 0373-0956

How to cite

top

David, Liana. "null." Annales de l’institut Fourier 0.0 (0): 1-28. <http://eudml.org/doc/275309>.

@article{David0,
affiliation = {“Simion Stoilow” Institute of Mathematics of the Romanian Academy Research Unit no. 4 Calea Grivitei 21 Sector 1, Bucharest (Romania)},
author = {David, Liana},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-28},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275309},
volume = {0},
year = {0},
}

TY - JOUR
AU - David, Liana
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 28
LA - eng
UR - http://eudml.org/doc/275309
ER -

References

top
  1. D. V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds, J. Geom. Phys. 42 (2002), 85-105 Zbl1004.53038
  2. Dmitri V. Alekseevsky, Liana David, Invariant generalized complex structures on Lie groups, Proc. Lond. Math. Soc. (3) 105 (2012), 703-729 Zbl1264.53035
  3. Nicolas Bourbaki, Lie Groups and Lie Algebras. Chapters 4–6, (2002), Springer-Verlag, New York Zbl0983.17001
  4. Paul Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), 257-288 Zbl0876.53015
  5. Alfred Gray, Luis M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58 Zbl0444.53032
  6. Marco Gualtieri, Generalized Complex Geometry, (2003) Zbl1235.32020
  7. Sigurdur Helgason, Differential Geometry and Symmetric Spaces, 34 (2001), AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island Zbl0993.53002
  8. Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), 281-308 
  9. Anthony W. Knapp, Lie Groups Beyond an Introduction, 140 (1996), Birkhäuser Boston, Inc., Boston, MA Zbl0862.22006
  10. Antonella Nannicini, Almost complex structures on cotangent bundles and generalized geometry, J. Geom. Phys. 60 (2010), 1781-1791 Zbl1200.53031
  11. Arkadij L. Onishchik, Ernest B Vinberg, Lie Groups and Lie Algebras III, 41 (1994), Springer-Verlag, Berlin 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.