[unknown]
- [1] Université de Paris XI Faculté des sciences d’Orsay 91405 Orsay cedex (France)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-37
- ISSN: 0373-0956
Access Full Article
topHow to cite
topMorzadec, Thomas. "null." Annales de l’institut Fourier 0.0 (0): 1-37. <http://eudml.org/doc/275312>.
@article{Morzadec0,
affiliation = {Université de Paris XI Faculté des sciences d’Orsay 91405 Orsay cedex (France)},
author = {Morzadec, Thomas},
journal = {Annales de l’institut Fourier},
language = {fre},
number = {0},
pages = {1-37},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275312},
volume = {0},
year = {0},
}
TY - JOUR
AU - Morzadec, Thomas
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 37
LA - fre
UR - http://eudml.org/doc/275312
ER -
References
top- M. Bestvina, M. Feighn, M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), 215-244 Zbl0884.57002
- Francis Bonahon, Geodesic currents on negatively curved groups, Arboreal group theory 19 (1991), 143-168, Springer Zbl0772.57004
- Francis Bonahon, Geodesic laminations on surfaces, Laminations and foliations in dynamics, geometry and topology 269 (2001), 1-37, Amer. Math. Soc., Providence, RI Zbl0996.53029
- Martin R. Bridson, André Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag Zbl0988.53001
- Fundamentals of hyperbolic manifolds : Selected expositions, (2006), CanaryRichardR. Zbl1083.30001
- Thierry Coulbois, Arnaud Hilion, Martin Lustig, Non-unique ergodicity, observers’ topology and the dual algebraic lamination for -trees, Illinois J. Math. 51 (2007), 897-911 Zbl1197.20020
- Klaus Dankwart, On the large-scale geometry of flat surfaces, (2011), (Diss. 2010) Zbl1278.30001
- Moon Duchin, Christopher J. Leininger, Kasra Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010), 231-277 Zbl1207.53052
- Ursula Hamenstädt, Geometry of the mapping class groups. I. Boundary amenability, Invent. Math. 175 (2009), 545-609 Zbl1197.57003
- Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), 119-135 Zbl0522.57027
- Albert Marden, Kurt Strebel, On the ends of trajectories, Differential geometry and complex analysis (1985), 195-204, Springer Zbl0583.53041
- Thomas Morzadec
- R. C. Penner, J. L. Harer, Combinatorics of train tracks, 125 (1992), Princeton University Press Zbl0765.57001
- Jean-Pierre Serre, Arbres, amalgames, ., 46 (1977), Astérisque
- Kurt Strebel, Quadratic differentials, 5 (1984), Springer-Verlag Zbl0547.30001
- Maxime Wolff, Connected components of the compactification of representation spaces of surface groups, Geom. Topol. 15 (2011), 1225-1295 Zbl1226.57027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.