Effective bounds for Faltings’s delta function
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 3, page 665-698
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topJorgenson, Jay, and Kramer, Jürg. "Effective bounds for Faltings’s delta function." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 665-698. <http://eudml.org/doc/275322>.
@article{Jorgenson2014,
abstract = {In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces $X$, nowadays called Faltings’s delta function and here denoted by $\delta _\{\mathrm\{Fal\}\}(X)$. For a given compact Riemann surface $X$ of genus $g_\{X\}=g$, the invariant $\delta _\{\mathrm\{Fal\}\}(X)$ is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space $\{\cal M\}_\{g\}$ of genus $g$ curves determined by $X$ to its boundary $\partial \{\cal M\}_\{g\}$. In this paper we begin by revisiting a formula derived in [14], which gives $\delta _\{\mathrm\{Fal\}\}(X)$ in purely hyperbolic terms provided that $g>1$. This formula then enables us to deduce effective bounds for $\delta _\{\mathrm\{Fal\}\}(X)$ in terms of the smallest non-zero eigenvalue of the hyperbolic Laplacian acting on smooth functions on $X$ as well as the length of the shortest closed geodesic on $X$. The article ends with a discussion of an application of our results to Parshin’s covering construction.},
author = {Jorgenson, Jay, Kramer, Jürg},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Faltings's delta function; effective bounds; hyperbolic geometry},
language = {eng},
number = {3},
pages = {665-698},
publisher = {Université Paul Sabatier, Toulouse},
title = {Effective bounds for Faltings’s delta function},
url = {http://eudml.org/doc/275322},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Jorgenson, Jay
AU - Kramer, Jürg
TI - Effective bounds for Faltings’s delta function
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 665
EP - 698
AB - In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces $X$, nowadays called Faltings’s delta function and here denoted by $\delta _{\mathrm{Fal}}(X)$. For a given compact Riemann surface $X$ of genus $g_{X}=g$, the invariant $\delta _{\mathrm{Fal}}(X)$ is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space ${\cal M}_{g}$ of genus $g$ curves determined by $X$ to its boundary $\partial {\cal M}_{g}$. In this paper we begin by revisiting a formula derived in [14], which gives $\delta _{\mathrm{Fal}}(X)$ in purely hyperbolic terms provided that $g>1$. This formula then enables us to deduce effective bounds for $\delta _{\mathrm{Fal}}(X)$ in terms of the smallest non-zero eigenvalue of the hyperbolic Laplacian acting on smooth functions on $X$ as well as the length of the shortest closed geodesic on $X$. The article ends with a discussion of an application of our results to Parshin’s covering construction.
LA - eng
KW - Faltings's delta function; effective bounds; hyperbolic geometry
UR - http://eudml.org/doc/275322
ER -
References
top- Arakelov (S. J.).— An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR Ser. Mat. 38, p. 1179-1192 (1974). Zbl0355.14002MR472815
- Arakelov (S. J.).— Theory of intersections on the arithmetic surface. Proc. Int. Congr. Math. Vancouver 1974, Vol. 1, p. 405-408. Canad. Math. Congress, Montréal, Québec (1975). Zbl0351.14003MR466150
- Aryasomayajula (A.).— Ph.D. Dissertation, Humboldt-Universität zu Berlin, Institut für Mathematik, September 2013.
- Bost (J.-B.), Mestre (J.-F.), Moret-Bailly (L.).— Sur le calcul explicite des “classes de Chern” des surfaces arithmétiques de genre . Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988), Astérisque 183, p. 69-105 (1990). Zbl0731.14017MR1065156
- Brooks (R.).— Platonic surfaces. Comment. Math. Helv. 74, p. 156-170 (1999). Zbl0920.30037MR1677565
- Buser (P.).— Geometry and spectra of compact Riemann surfaces. Prog. Math. 106, Birkhäuser Verlag, Boston-Basel-Berlin (1992). Zbl0770.53001MR1183224
- Chang (F. R.).— On the diameters of compact Riemann surfaces. Proc. Amer. Math. Soc. 65, p. 274-276 (1977). Zbl0347.30016MR447556
- Faltings (G.).— Calculus on arithmetic surfaces. Ann. of Math. (2) 119, p. 387-424 (1984). Zbl0559.14005MR740897
- Friedman (J. S.), Jorgenson (J.), Kramer (J.).— An effective bound for the Huber constant for cofinite Fuchsian groups. Math. Comp. 20, p. 1163-1196 (2011). Zbl1229.11083MR2772118
- Jorgenson (J.).— Asymptotic behavior of Faltings’s delta function. Duke Math J. 61, p. 221-254 (1990). Zbl0746.30032MR1068387
- Jorgenson (J.), Kramer (J.).— Bounds on special values of Selberg’s zeta functions for Riemann surfaces. J. reine angew. Math 541, p. 1-28 (2001). Zbl0986.11058MR1876283
- Jorgenson (J.), Kramer (J.).— On the error term of the prime geodesic theorem. Forum Math. 14, p. 901-913 (2002). Zbl1138.11326MR1932525
- Jorgenson (J.), Kramer (J.).— Bounding the sup-norm of automorphic forms. Geom. Funct. Anal. 14, 1267-1277 (2004). Zbl1078.11027MR2135167
- Jorgenson (J.), Kramer (J.).— Bounds on Faltings’s delta function through covers. Ann. of Math. (2) 170, p. 1-43 (2009). Zbl1169.14020MR2521110
- Jorgenson (J.), Kramer (J.).— Sup-norm bounds for automorphic forms and Eisenstein series. In: J. Cogdell et al. (eds.), “Arithmetic Geometry and Automorphic Forms”, ALM 19, p. 407-444. Higher Education Press and International Press, Beijing-Boston (2011). Zbl1276.11082MR2906915
- Jorgenson (J.), Kramer (J.).— A relation involving Rankin-Selberg -functions of cusp forms and Maass forms. In: B. Krötz, O. Offen, E. Sayag (eds.), “Representation Theory, Complex Analysis, and Integral Geometry”, p. 9-40. Birkhäuser Verlag, Basel (2011). Zbl1309.11042MR2885066
- Jorgenson (J.), Lundelius (R.).— Convergence theorems for relative spectral functions on hyperbolic Riemann surfaces of finite volume. Duke Math. J. 80, p. 785-819 (1995). Zbl0973.58016MR1370116
- Kudla (S.), Millson (J.).— Harmonic differentials and closed geodesics on a Riemann surface. Invent. Math. 54, p. 193-211 (1979). Zbl0429.30038MR553218
- Parshin (A. N.).— On the application of ramified coverings in the theory of diophantine equations. Math. USSR Sbornik 60, p. 249-264 (1990). Zbl0702.14017MR993457
- Sarnak (P.).— Determinants of Laplacians. Commun. Math. Phys. 110, p. 113-120 (1987). Zbl0618.10023MR885573
- Soulé (C.).— Géométrie d’Arakelov des surfaces arithmétiques. Séminaire Bourbaki, Vol. 1988/89. Astérisque 177-178, Exp. No. 713, p. 327-343 (1989). Zbl0766.14015MR1040579
- Soulé (C.).— Lectures on Arakelov geometry. With the collaboration of D. Abramovich, J.-F. Burnol, and J. Kramer. Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, Cambridge, 1992. viii+177 pages. Zbl0812.14015MR1208731
- Wentworth (R. A.).— The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant. Comm. Math. Phys. 137, p. 427-459 (1991). Zbl0820.14017MR1105425
- Wentworth (R. A.).— Precise constants in bosonization formulas on Riemann surfaces. I. Comm. Math. Phys. 282, p. 339-355 (2008). Zbl1158.58017MR2421480
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.