Effective bounds for Faltings’s delta function

Jay Jorgenson; Jürg Kramer

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 3, page 665-698
  • ISSN: 0240-2963

Abstract

top
In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces X , nowadays called Faltings’s delta function and here denoted by δ Fal ( X ) . For a given compact Riemann surface X of genus g X = g , the invariant δ Fal ( X ) is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space g of genus g curves determined by X to its boundary g . In this paper we begin by revisiting a formula derived in [14], which gives δ Fal ( X ) in purely hyperbolic terms provided that g > 1 . This formula then enables us to deduce effective bounds for δ Fal ( X ) in terms of the smallest non-zero eigenvalue of the hyperbolic Laplacian acting on smooth functions on X as well as the length of the shortest closed geodesic on X . The article ends with a discussion of an application of our results to Parshin’s covering construction.

How to cite

top

Jorgenson, Jay, and Kramer, Jürg. "Effective bounds for Faltings’s delta function." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 665-698. <http://eudml.org/doc/275322>.

@article{Jorgenson2014,
abstract = {In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces $X$, nowadays called Faltings’s delta function and here denoted by $\delta _\{\mathrm\{Fal\}\}(X)$. For a given compact Riemann surface $X$ of genus $g_\{X\}=g$, the invariant $\delta _\{\mathrm\{Fal\}\}(X)$ is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space $\{\cal M\}_\{g\}$ of genus $g$ curves determined by $X$ to its boundary $\partial \{\cal M\}_\{g\}$. In this paper we begin by revisiting a formula derived in [14], which gives $\delta _\{\mathrm\{Fal\}\}(X)$ in purely hyperbolic terms provided that $g&gt;1$. This formula then enables us to deduce effective bounds for $\delta _\{\mathrm\{Fal\}\}(X)$ in terms of the smallest non-zero eigenvalue of the hyperbolic Laplacian acting on smooth functions on $X$ as well as the length of the shortest closed geodesic on $X$. The article ends with a discussion of an application of our results to Parshin’s covering construction.},
author = {Jorgenson, Jay, Kramer, Jürg},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Faltings's delta function; effective bounds; hyperbolic geometry},
language = {eng},
number = {3},
pages = {665-698},
publisher = {Université Paul Sabatier, Toulouse},
title = {Effective bounds for Faltings’s delta function},
url = {http://eudml.org/doc/275322},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Jorgenson, Jay
AU - Kramer, Jürg
TI - Effective bounds for Faltings’s delta function
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 665
EP - 698
AB - In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces $X$, nowadays called Faltings’s delta function and here denoted by $\delta _{\mathrm{Fal}}(X)$. For a given compact Riemann surface $X$ of genus $g_{X}=g$, the invariant $\delta _{\mathrm{Fal}}(X)$ is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space ${\cal M}_{g}$ of genus $g$ curves determined by $X$ to its boundary $\partial {\cal M}_{g}$. In this paper we begin by revisiting a formula derived in [14], which gives $\delta _{\mathrm{Fal}}(X)$ in purely hyperbolic terms provided that $g&gt;1$. This formula then enables us to deduce effective bounds for $\delta _{\mathrm{Fal}}(X)$ in terms of the smallest non-zero eigenvalue of the hyperbolic Laplacian acting on smooth functions on $X$ as well as the length of the shortest closed geodesic on $X$. The article ends with a discussion of an application of our results to Parshin’s covering construction.
LA - eng
KW - Faltings's delta function; effective bounds; hyperbolic geometry
UR - http://eudml.org/doc/275322
ER -

References

top
  1. Arakelov (S. J.).— An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR Ser. Mat. 38, p. 1179-1192 (1974). Zbl0355.14002MR472815
  2. Arakelov (S. J.).— Theory of intersections on the arithmetic surface. Proc. Int. Congr. Math. Vancouver 1974, Vol. 1, p. 405-408. Canad. Math. Congress, Montréal, Québec (1975). Zbl0351.14003MR466150
  3. Aryasomayajula (A.).— Ph.D. Dissertation, Humboldt-Universität zu Berlin, Institut für Mathematik, September 2013. 
  4. Bost (J.-B.), Mestre (J.-F.), Moret-Bailly (L.).— Sur le calcul explicite des “classes de Chern” des surfaces arithmétiques de genre 2 . Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988), Astérisque 183, p. 69-105 (1990). Zbl0731.14017MR1065156
  5. Brooks (R.).— Platonic surfaces. Comment. Math. Helv. 74, p. 156-170 (1999). Zbl0920.30037MR1677565
  6. Buser (P.).— Geometry and spectra of compact Riemann surfaces. Prog. Math. 106, Birkhäuser Verlag, Boston-Basel-Berlin (1992). Zbl0770.53001MR1183224
  7. Chang (F. R.).— On the diameters of compact Riemann surfaces. Proc. Amer. Math. Soc. 65, p. 274-276 (1977). Zbl0347.30016MR447556
  8. Faltings (G.).— Calculus on arithmetic surfaces. Ann. of Math. (2) 119, p. 387-424 (1984). Zbl0559.14005MR740897
  9. Friedman (J. S.), Jorgenson (J.), Kramer (J.).— An effective bound for the Huber constant for cofinite Fuchsian groups. Math. Comp. 20, p. 1163-1196 (2011). Zbl1229.11083MR2772118
  10. Jorgenson (J.).— Asymptotic behavior of Faltings’s delta function. Duke Math J. 61, p. 221-254 (1990). Zbl0746.30032MR1068387
  11. Jorgenson (J.), Kramer (J.).— Bounds on special values of Selberg’s zeta functions for Riemann surfaces. J. reine angew. Math 541, p. 1-28 (2001). Zbl0986.11058MR1876283
  12. Jorgenson (J.), Kramer (J.).— On the error term of the prime geodesic theorem. Forum Math. 14, p. 901-913 (2002). Zbl1138.11326MR1932525
  13. Jorgenson (J.), Kramer (J.).— Bounding the sup-norm of automorphic forms. Geom. Funct. Anal. 14, 1267-1277 (2004). Zbl1078.11027MR2135167
  14. Jorgenson (J.), Kramer (J.).— Bounds on Faltings’s delta function through covers. Ann. of Math. (2) 170, p. 1-43 (2009). Zbl1169.14020MR2521110
  15. Jorgenson (J.), Kramer (J.).— Sup-norm bounds for automorphic forms and Eisenstein series. In: J. Cogdell et al. (eds.), “Arithmetic Geometry and Automorphic Forms”, ALM 19, p. 407-444. Higher Education Press and International Press, Beijing-Boston (2011). Zbl1276.11082MR2906915
  16. Jorgenson (J.), Kramer (J.).— A relation involving Rankin-Selberg L -functions of cusp forms and Maass forms. In: B. Krötz, O. Offen, E. Sayag (eds.), “Representation Theory, Complex Analysis, and Integral Geometry”, p. 9-40. Birkhäuser Verlag, Basel (2011). Zbl1309.11042MR2885066
  17. Jorgenson (J.), Lundelius (R.).— Convergence theorems for relative spectral functions on hyperbolic Riemann surfaces of finite volume. Duke Math. J. 80, p. 785-819 (1995). Zbl0973.58016MR1370116
  18. Kudla (S.), Millson (J.).— Harmonic differentials and closed geodesics on a Riemann surface. Invent. Math. 54, p. 193-211 (1979). Zbl0429.30038MR553218
  19. Parshin (A. N.).— On the application of ramified coverings in the theory of diophantine equations. Math. USSR Sbornik 60, p. 249-264 (1990). Zbl0702.14017MR993457
  20. Sarnak (P.).— Determinants of Laplacians. Commun. Math. Phys. 110, p. 113-120 (1987). Zbl0618.10023MR885573
  21. Soulé (C.).— Géométrie d’Arakelov des surfaces arithmétiques. Séminaire Bourbaki, Vol. 1988/89. Astérisque 177-178, Exp. No. 713, p. 327-343 (1989). Zbl0766.14015MR1040579
  22. Soulé (C.).— Lectures on Arakelov geometry. With the collaboration of D. Abramovich, J.-F. Burnol, and J. Kramer. Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, Cambridge, 1992. viii+177 pages. Zbl0812.14015MR1208731
  23. Wentworth (R. A.).— The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant. Comm. Math. Phys. 137, p. 427-459 (1991). Zbl0820.14017MR1105425
  24. Wentworth (R. A.).— Precise constants in bosonization formulas on Riemann surfaces. I. Comm. Math. Phys. 282, p. 339-355 (2008). Zbl1158.58017MR2421480

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.