An extension theorem for Kähler currents with analytic singularities

Tristan C. Collins; Valentino Tosatti

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 4, page 893-905
  • ISSN: 0240-2963

Abstract

top
We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.

How to cite

top

Collins, Tristan C., and Tosatti, Valentino. "An extension theorem for Kähler currents with analytic singularities." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 893-905. <http://eudml.org/doc/275326>.

@article{Collins2014,
abstract = {We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.},
author = {Collins, Tristan C., Tosatti, Valentino},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Kähler manifolds; extension of Kähler metrics; extension of closed positive currents},
language = {eng},
number = {4},
pages = {893-905},
publisher = {Université Paul Sabatier, Toulouse},
title = {An extension theorem for Kähler currents with analytic singularities},
url = {http://eudml.org/doc/275326},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Collins, Tristan C.
AU - Tosatti, Valentino
TI - An extension theorem for Kähler currents with analytic singularities
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 893
EP - 905
AB - We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.
LA - eng
KW - Kähler manifolds; extension of Kähler metrics; extension of closed positive currents
UR - http://eudml.org/doc/275326
ER -

References

top
  1. Collins (T.C.), Greenleaf (A.), Pramanik (M.).— A multi-dimensional resolution of singularities with applications to analysis, Amer. J. Math. 135, no. 5, p. 1179-1252 (2013). Zbl1281.32026MR3117305
  2. Collins (T.C.), V. Tosatti (V.).— Kähler currents and null loci, preprint, arXiv:1304.5216. Zbl06518189
  3. Coltoiu (M.).— Traces of Runge domains on analytic subsets, Math. Ann. 290, p. 545-548 (1991). Zbl0747.32005MR1116237
  4. Coman (D.), Guedj (V.), Zeriahi (A.).— Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math. 676, p. 33-49 (2013). Zbl1269.32018MR3028754
  5. Demailly (J.-P.).— Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1, no. 3, p. 361-409 (1992). Zbl0777.32016MR1158622
  6. Demailly (J.-P.), Păun (M.).— Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math., 159, no. 3, p. 1247-1274 (2004). Zbl1064.32019MR2113021
  7. Hisamoto (T.).— Remarks on L 2 -jet extension and extension of singular Hermitian metric with semi positive curvature, preprint, arXiv:1205.1953. 
  8. Ohsawa (T.), Takegoshi (K.).— On the extension of L 2 holomorphic functions, Math. Z. 195, no. 2, p. 197-204 (1987). Zbl0625.32011MR892051
  9. Ornea (L.), Verbitsky (M.).— Embeddings of compact Sasakian manifolds, Math. Res. Lett. 14, no. 4, p. 703-710 (2007). Zbl1140.53035MR2335996
  10. Phong (D.H.), Stein (E.M.), Sturm (J.).— On the growth and stability of real-analytic functions, Amer. J. Math. 121, no. 3, p. 519-554 (1999). Zbl1015.26031MR1738409
  11. Phong (D.H.), Sturm (J.).— Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152, no. 1, p. 277-329 (2000). Zbl0995.11065MR1792297
  12. Phong (D.H.), Sturm (J.).— On the algebraic constructibility of varieties of integrable rational functions on n , Math. Ann. 323, no. 3, p. 453-484 (2002). Zbl1010.32017MR1923693
  13. Richberg (R.).— Stetige streng pseudokonvexe Funktionen, Math. Ann. 175, p. 257-286 (1968). Zbl0153.15401MR222334
  14. Sadullaev (A.).— Extension of plurisubharmonic functions from a submanifold, Dokl. Akad. Nauk USSR 5, p. 3-4 (1982). Zbl0637.32014
  15. Schumacher (G.).— Asymptotics of Kähler-Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann. 311, no. 4, p. 631-645 (1998). Zbl0915.32002MR1637968
  16. Siu (Y.-T.).— Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38, no. 1, p. 89-100 (1976/77). Zbl0343.32014MR435447
  17. Wu (D.).— Higher canonical asymptotics of Kähler-Einstein metrics on quasi-projective manifolds, Comm. Anal. Geom. 14, no. 4, p. 795-845 (2006). Zbl1116.32019MR2273294

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.