An extension theorem for Kähler currents with analytic singularities
Tristan C. Collins; Valentino Tosatti
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 4, page 893-905
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topCollins, Tristan C., and Tosatti, Valentino. "An extension theorem for Kähler currents with analytic singularities." Annales de la faculté des sciences de Toulouse Mathématiques 23.4 (2014): 893-905. <http://eudml.org/doc/275326>.
@article{Collins2014,
abstract = {We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.},
author = {Collins, Tristan C., Tosatti, Valentino},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Kähler manifolds; extension of Kähler metrics; extension of closed positive currents},
language = {eng},
number = {4},
pages = {893-905},
publisher = {Université Paul Sabatier, Toulouse},
title = {An extension theorem for Kähler currents with analytic singularities},
url = {http://eudml.org/doc/275326},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Collins, Tristan C.
AU - Tosatti, Valentino
TI - An extension theorem for Kähler currents with analytic singularities
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 4
SP - 893
EP - 905
AB - We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.
LA - eng
KW - Kähler manifolds; extension of Kähler metrics; extension of closed positive currents
UR - http://eudml.org/doc/275326
ER -
References
top- Collins (T.C.), Greenleaf (A.), Pramanik (M.).— A multi-dimensional resolution of singularities with applications to analysis, Amer. J. Math. 135, no. 5, p. 1179-1252 (2013). Zbl1281.32026MR3117305
- Collins (T.C.), V. Tosatti (V.).— Kähler currents and null loci, preprint, arXiv:1304.5216. Zbl06518189
- Coltoiu (M.).— Traces of Runge domains on analytic subsets, Math. Ann. 290, p. 545-548 (1991). Zbl0747.32005MR1116237
- Coman (D.), Guedj (V.), Zeriahi (A.).— Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math. 676, p. 33-49 (2013). Zbl1269.32018MR3028754
- Demailly (J.-P.).— Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1, no. 3, p. 361-409 (1992). Zbl0777.32016MR1158622
- Demailly (J.-P.), Păun (M.).— Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math., 159, no. 3, p. 1247-1274 (2004). Zbl1064.32019MR2113021
- Hisamoto (T.).— Remarks on -jet extension and extension of singular Hermitian metric with semi positive curvature, preprint, arXiv:1205.1953.
- Ohsawa (T.), Takegoshi (K.).— On the extension of holomorphic functions, Math. Z. 195, no. 2, p. 197-204 (1987). Zbl0625.32011MR892051
- Ornea (L.), Verbitsky (M.).— Embeddings of compact Sasakian manifolds, Math. Res. Lett. 14, no. 4, p. 703-710 (2007). Zbl1140.53035MR2335996
- Phong (D.H.), Stein (E.M.), Sturm (J.).— On the growth and stability of real-analytic functions, Amer. J. Math. 121, no. 3, p. 519-554 (1999). Zbl1015.26031MR1738409
- Phong (D.H.), Sturm (J.).— Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152, no. 1, p. 277-329 (2000). Zbl0995.11065MR1792297
- Phong (D.H.), Sturm (J.).— On the algebraic constructibility of varieties of integrable rational functions on , Math. Ann. 323, no. 3, p. 453-484 (2002). Zbl1010.32017MR1923693
- Richberg (R.).— Stetige streng pseudokonvexe Funktionen, Math. Ann. 175, p. 257-286 (1968). Zbl0153.15401MR222334
- Sadullaev (A.).— Extension of plurisubharmonic functions from a submanifold, Dokl. Akad. Nauk USSR 5, p. 3-4 (1982). Zbl0637.32014
- Schumacher (G.).— Asymptotics of Kähler-Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps, Math. Ann. 311, no. 4, p. 631-645 (1998). Zbl0915.32002MR1637968
- Siu (Y.-T.).— Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38, no. 1, p. 89-100 (1976/77). Zbl0343.32014MR435447
- Wu (D.).— Higher canonical asymptotics of Kähler-Einstein metrics on quasi-projective manifolds, Comm. Anal. Geom. 14, no. 4, p. 795-845 (2006). Zbl1116.32019MR2273294
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.