Valiron-Titchmarsh Theorem for Subharmonic Functions in n With Masses on a Half-Line

Alexander I. Kheyfits

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 1, page 159-173
  • ISSN: 0240-2963

Abstract

top
The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in n , n 3 , having the Riesz masses on a ray.

How to cite

top

Kheyfits, Alexander I.. "Valiron-Titchmarsh Theorem for Subharmonic Functions in ${\mathbb{R}}^n$ With Masses on a Half-Line." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 159-173. <http://eudml.org/doc/275344>.

@article{Kheyfits2014,
abstract = {The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in $\{\mathbb\{R\}\}^n,\; n\ge 3$, having the Riesz masses on a ray.},
author = {Kheyfits, Alexander I.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {subharmonic function; Riesz measure; asymptotic behaviour},
language = {eng},
number = {1},
pages = {159-173},
publisher = {Université Paul Sabatier, Toulouse},
title = {Valiron-Titchmarsh Theorem for Subharmonic Functions in $\{\mathbb\{R\}\}^n$ With Masses on a Half-Line},
url = {http://eudml.org/doc/275344},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Kheyfits, Alexander I.
TI - Valiron-Titchmarsh Theorem for Subharmonic Functions in ${\mathbb{R}}^n$ With Masses on a Half-Line
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 159
EP - 173
AB - The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in ${\mathbb{R}}^n,\; n\ge 3$, having the Riesz masses on a ray.
LA - eng
KW - subharmonic function; Riesz measure; asymptotic behaviour
UR - http://eudml.org/doc/275344
ER -

References

top
  1. Agranovich (P.Z.).— Polynomial asymptotic representations of subharmonic functions with masses on one ray in the space (Ukrainian). Matematychni Studii, Lviv. 23, p. 169-178 (2005). Zbl1091.31002MR2184407
  2. Agranovich (P.Z.), Logvinenko (V.N.).— An analog of the Valiron-Titchmarsh theorem for two-term asymptotics of subharmonic functions with masses on a finite system of rays. Sib. Math. J. 5, p. 3-19 (1985). Zbl0578.31002MR808697
  3. Azarin (V.S.).— Indicator of a function subharmonic in n-dimensional space (Russian). Dokl. Akad. Nauk SSSR, 139, p. 1033-1036 (1961). Zbl0114.30601MR170021
  4. Azarin (V.S.).— On the Valiron-Titchmarsh theorem and limit sets of entire functions. Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), 53–60. Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan (1997). Zbl0895.30019MR1476703
  5. Azarin (V.S.).— Growth Theory of Subharmonic Functions. Birkh¨auser, Basel – Boston – Berlin (2009). Zbl1157.31001MR2463743
  6. Bateman (H.), Erdélyi.— Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York – Toronto – London (1953). Zbl0064.06302MR58756
  7. Bateman (H.), Erdélyi.— Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York – Toronto – London (1954). Zbl0058.34103
  8. Bauer (H.F.).— Tables of the roots of the associated Legendre function with respect to the Degree, Mathematics of Computation, 46, No. 174, p. 601-602 (1986). Zbl0591.33007MR829629
  9. Beardon (A.F.).— Montel’s theorem for subharmonic functions and solutions of partial differential equations. Proc. Camb. Phil. Soc. 69, p. 123-150 (1971). Zbl0207.11003MR269863
  10. Delange (H.).— Un théorème sur les fonctions entières à zéros réelles et négative. J. Math. Pures Appl. (9) 31, p. 55-78 (1952). Zbl0046.30401
  11. Drasin (D.).— Baernstein’s thesis and entire functions with negative zeros. Matematychni Studii, 34, p. 160-167 (2010). Zbl1224.30135MR2828403
  12. Goldberg (A.A.), Ostrovskii (I.V.).— On the growth of a subharmonic function with Riesz measure on a ray. Matematicheskaya Fizika, Analiz, Geometriya, 11, p. 107-113 (2004). Zbl1081.31005MR2046356
  13. Hardy (G.H.).— Divergent Series. Oxford (1949). Zbl0032.05801MR30620
  14. Hayman (W.K.), Kennedy (P.B.).— Subharmonic Functions. Vol. 1. Academic Press, London – New York – San Francisco (1976). Zbl0699.31001MR460672
  15. Hobson (E.W.).— The Theory of Spherical and Ellipsoidal Harmonics. Chelsey, New York (1955). Zbl0004.21001MR64922
  16. Kheyfits (A.).— A generalization of E. Titchmarsh theorem on entire functions with negative zeros. Izv. VUZov. Math. No. 2 (129) p. 99-105 (1973). MR320312
  17. Kheyfits (A.).— Analogue of the Valiron-Titchmarsh theorem for entire functions with roots on a logarithmic spiral, Soviet Math. (Izv. VUZ.) 24, p. 92-94 (1980). Zbl0465.30019
  18. Levin (B.Ya.).— Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs, Vol. 5. Amer. Math. Soc., Providence, Rhode Island, Revised Edition (1980). Zbl0152.06703MR589888
  19. Levin (B.Ya.).— Lectures on Entire Functions. Amer. Math. Soc., Providence, Rhode Island (1996). Zbl0856.30001MR1400006
  20. Paley (R.E.A.C.), Wiener (N.).— Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York (1934). Zbl0011.01601MR1451142
  21. Ronkin (L.I.).— Functions of Completely Regular Growth. Kluwer Acad. Publ., Dordrecht (1992). Zbl0754.32001MR1196691
  22. Szmytkowski (R.).— Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1, 1). Integral Transforms and Special Functions, 23, p. 847-852 (2012). Zbl1271.33006MR2989753
  23. Titchmarsh (E.C.).— On integral functions with real negative zeros. Proc. London Math. Soc. 26, p. 185-200 (1927). Zbl53.0295.01MR1576928
  24. Valiron (G.).— Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière. Annales de la faculté des sciences de Toulouse (3) 5, p. 117-257 (1913). Zbl46.1462.03MR1508338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.