Valiron-Titchmarsh Theorem for Subharmonic Functions in With Masses on a Half-Line
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 1, page 159-173
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKheyfits, Alexander I.. "Valiron-Titchmarsh Theorem for Subharmonic Functions in ${\mathbb{R}}^n$ With Masses on a Half-Line." Annales de la faculté des sciences de Toulouse Mathématiques 23.1 (2014): 159-173. <http://eudml.org/doc/275344>.
@article{Kheyfits2014,
abstract = {The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in $\{\mathbb\{R\}\}^n,\; n\ge 3$, having the Riesz masses on a ray.},
author = {Kheyfits, Alexander I.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {subharmonic function; Riesz measure; asymptotic behaviour},
language = {eng},
number = {1},
pages = {159-173},
publisher = {Université Paul Sabatier, Toulouse},
title = {Valiron-Titchmarsh Theorem for Subharmonic Functions in $\{\mathbb\{R\}\}^n$ With Masses on a Half-Line},
url = {http://eudml.org/doc/275344},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Kheyfits, Alexander I.
TI - Valiron-Titchmarsh Theorem for Subharmonic Functions in ${\mathbb{R}}^n$ With Masses on a Half-Line
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 1
SP - 159
EP - 173
AB - The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in ${\mathbb{R}}^n,\; n\ge 3$, having the Riesz masses on a ray.
LA - eng
KW - subharmonic function; Riesz measure; asymptotic behaviour
UR - http://eudml.org/doc/275344
ER -
References
top- Agranovich (P.Z.).— Polynomial asymptotic representations of subharmonic functions with masses on one ray in the space (Ukrainian). Matematychni Studii, Lviv. 23, p. 169-178 (2005). Zbl1091.31002MR2184407
- Agranovich (P.Z.), Logvinenko (V.N.).— An analog of the Valiron-Titchmarsh theorem for two-term asymptotics of subharmonic functions with masses on a finite system of rays. Sib. Math. J. 5, p. 3-19 (1985). Zbl0578.31002MR808697
- Azarin (V.S.).— Indicator of a function subharmonic in n-dimensional space (Russian). Dokl. Akad. Nauk SSSR, 139, p. 1033-1036 (1961). Zbl0114.30601MR170021
- Azarin (V.S.).— On the Valiron-Titchmarsh theorem and limit sets of entire functions. Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), 5360. Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan (1997). Zbl0895.30019MR1476703
- Azarin (V.S.).— Growth Theory of Subharmonic Functions. Birkh¨auser, Basel – Boston – Berlin (2009). Zbl1157.31001MR2463743
- Bateman (H.), Erdélyi.— Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York – Toronto – London (1953). Zbl0064.06302MR58756
- Bateman (H.), Erdélyi.— Tables of Integral Transforms, Vol. 1. McGraw-Hill, New York – Toronto – London (1954). Zbl0058.34103
- Bauer (H.F.).— Tables of the roots of the associated Legendre function with respect to the Degree, Mathematics of Computation, 46, No. 174, p. 601-602 (1986). Zbl0591.33007MR829629
- Beardon (A.F.).— Montel’s theorem for subharmonic functions and solutions of partial differential equations. Proc. Camb. Phil. Soc. 69, p. 123-150 (1971). Zbl0207.11003MR269863
- Delange (H.).— Un théorème sur les fonctions entières à zéros réelles et négative. J. Math. Pures Appl. (9) 31, p. 55-78 (1952). Zbl0046.30401
- Drasin (D.).— Baernstein’s thesis and entire functions with negative zeros. Matematychni Studii, 34, p. 160-167 (2010). Zbl1224.30135MR2828403
- Goldberg (A.A.), Ostrovskii (I.V.).— On the growth of a subharmonic function with Riesz measure on a ray. Matematicheskaya Fizika, Analiz, Geometriya, 11, p. 107-113 (2004). Zbl1081.31005MR2046356
- Hardy (G.H.).— Divergent Series. Oxford (1949). Zbl0032.05801MR30620
- Hayman (W.K.), Kennedy (P.B.).— Subharmonic Functions. Vol. 1. Academic Press, London – New York – San Francisco (1976). Zbl0699.31001MR460672
- Hobson (E.W.).— The Theory of Spherical and Ellipsoidal Harmonics. Chelsey, New York (1955). Zbl0004.21001MR64922
- Kheyfits (A.).— A generalization of E. Titchmarsh theorem on entire functions with negative zeros. Izv. VUZov. Math. No. 2 (129) p. 99-105 (1973). MR320312
- Kheyfits (A.).— Analogue of the Valiron-Titchmarsh theorem for entire functions with roots on a logarithmic spiral, Soviet Math. (Izv. VUZ.) 24, p. 92-94 (1980). Zbl0465.30019
- Levin (B.Ya.).— Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs, Vol. 5. Amer. Math. Soc., Providence, Rhode Island, Revised Edition (1980). Zbl0152.06703MR589888
- Levin (B.Ya.).— Lectures on Entire Functions. Amer. Math. Soc., Providence, Rhode Island (1996). Zbl0856.30001MR1400006
- Paley (R.E.A.C.), Wiener (N.).— Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York (1934). Zbl0011.01601MR1451142
- Ronkin (L.I.).— Functions of Completely Regular Growth. Kluwer Acad. Publ., Dordrecht (1992). Zbl0754.32001MR1196691
- Szmytkowski (R.).— Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1, 1). Integral Transforms and Special Functions, 23, p. 847-852 (2012). Zbl1271.33006MR2989753
- Titchmarsh (E.C.).— On integral functions with real negative zeros. Proc. London Math. Soc. 26, p. 185-200 (1927). Zbl53.0295.01MR1576928
- Valiron (G.).— Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière. Annales de la faculté des sciences de Toulouse (3) 5, p. 117-257 (1913). Zbl46.1462.03MR1508338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.