Pierre-Emmanuel Caprace[1]; David Hume[1]

  • [1] IRMP, UCLouvain Bât. M. de Hemptinne - Chemin du Cyclotron, 2 1348 Louvain-la-Neuve (Belgium)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-28
  • ISSN: 0373-0956

How to cite


Caprace, Pierre-Emmanuel, and Hume, David. "null." Annales de l’institut Fourier 0.0 (0): 1-28. <http://eudml.org/doc/275356>.

affiliation = {IRMP, UCLouvain Bât. M. de Hemptinne - Chemin du Cyclotron, 2 1348 Louvain-la-Neuve (Belgium); IRMP, UCLouvain Bât. M. de Hemptinne - Chemin du Cyclotron, 2 1348 Louvain-la-Neuve (Belgium)},
author = {Caprace, Pierre-Emmanuel, Hume, David},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-28},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275356},
volume = {0},
year = {0},

AU - Caprace, Pierre-Emmanuel
AU - Hume, David
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 28
LA - eng
UR - http://eudml.org/doc/275356
ER -


  1. Peter Abramenko, Kenneth S. Brown, Buildings, 248 (2008), Springer, New York Zbl1214.20033
  2. Werner Ballmann, Lectures on spaces of nonpositive curvature, 25 (1995), Birkhäuser Verlag, Basel Zbl0834.53003
  3. Mladen Bestvina, Ken Bromberg, Koji Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces Zbl06588943
  4. Mladen Bestvina, Ken Bromberg, Koji Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups Zbl06521340
  5. Mladen Bestvina, Koji Fujiwara, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009), 11-40 Zbl1203.53041
  6. Martin R. Bridson, André Haefliger, Metric spaces of non-positive curvature, 319 (1999), Springer-Verlag, Berlin Zbl0988.53001
  7. Sophie de Buyl, Marc Henneaux, Louis Paulot, Extended E 8 invariance of 11-dimensional supergravity, J. High Energy Phys. (2006) 
  8. Serge Cantat, Stéphane Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), 31-94 Zbl1278.14017
  9. Pierre-Emmanuel Caprace, Koji Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal. 19 (2010), 1296-1319 Zbl1206.20046
  10. Pierre-Emmanuel Caprace, Timothée Marquis, Open subgroups of locally compact Kac-Moody groups, Math. Z. 274 (2013), 291-313 Zbl1275.20057
  11. Pierre-Emmanuel Caprace, Nicolas Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol. 2 (2009), 701-746 Zbl1187.53037
  12. Pierre-Emmanuel Caprace, Bertrand Rémy, Simplicity and superrigidity of twin building lattices, Invent. Math. 176 (2009), 169-221 Zbl1173.22007
  13. Pierre-Emmanuel Caprace, Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), 851-891 Zbl1266.20054
  14. François Dahmani, Vincent Guirardel, Denis V. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces 
  15. Thibault Damour, Axel Kleinschmidt, Hermann Nicolai, Hidden symmetries and the fermionic sector of eleven-dimensional supergravity, Phys. Lett. B 634 (2006), 319-324 Zbl1247.83225
  16. Michael W. Davis, Buildings are CAT ( 0 ) , Geometry and cohomology in group theory (Durham, 1994) 252 (1998), 108-123, Cambridge Univ. Press, Cambridge Zbl0978.51005
  17. David Ghatei, Max Horn, Ralf Köhl, Sebastian Weiß, Spin covers of maximal compact subgroups of Kac-Moody groups and spin extended Weyl groups 
  18. Ralf Gramlich, Bernhard Mühlherr, Lattices from involutions of Kac-Moody groups, Oberwolfach Rep. 5 (2007), 139-140 
  19. Guntram Hainke, Ralf Köhl, Paul Levy, Generalized spin representations 
  20. Tobias Hartnick, Ralf Köhl, Andreas Mars, On topological twin buildings and topological split Kac-Moody groups, Innov. Incidence Geom. 13 (2013), 1-71 Zbl1295.51017
  21. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 34 (2001), American Mathematical Society, Providence, RI Zbl0993.53002
  22. David Hume, Embedding mapping class groups into finite products of trees Zbl06471234
  23. Timothée Marquis, Abstract simplicity of locally compact Kac-Moody groups, Compos. Math. 150 (2014), 713-728 Zbl06333828
  24. Timothée Marquis, Conjugacy classes and straight elements in Coxeter groups, J. Algebra 407 (2014), 68-80 Zbl1300.20046
  25. Ashot Minasyan, Denis V. Osin, Acylindrical hyperbolicity of groups acting on trees Zbl06469760
  26. G. A. Niblo, L. D. Reeves, Coxeter groups act on CAT ( 0 ) cube complexes, J. Group Theory 6 (2003), 399-413 Zbl1068.20040
  27. Guennadi A. Noskov, Èrnest B. Vinberg, Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory 12 (2002), 259-264 Zbl0999.20029
  28. Denis V. Osin, Acylindrically hyperbolic groups Zbl06560446
  29. Bertrand Rémy, Construction de réseaux en théorie de Kac-Moody, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 475-478 Zbl0933.22029
  30. Alessandro Sisto, Contracting elements and random walks Zbl1309.20036
  31. Alessandro Sisto, Quasi-convexity of hyperbolically embedded subgroups Zbl1283.20051
  32. Jacques Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542-573 Zbl0626.22013

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.