Traces, lengths, axes and commensurability

Alan W. Reid

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 5, page 1103-1118
  • ISSN: 0240-2963

Abstract

top
The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.

How to cite

top

Reid, Alan W.. "Traces, lengths, axes and commensurability." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1103-1118. <http://eudml.org/doc/275361>.

@article{Reid2014,
abstract = {The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.},
author = {Reid, Alan W.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperbolic manifold; length spectrum; length set; axes set; commensurability; survey},
language = {eng},
number = {5},
pages = {1103-1118},
publisher = {Université Paul Sabatier, Toulouse},
title = {Traces, lengths, axes and commensurability},
url = {http://eudml.org/doc/275361},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Reid, Alan W.
TI - Traces, lengths, axes and commensurability
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1103
EP - 1118
AB - The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.
LA - eng
KW - hyperbolic manifold; length spectrum; length set; axes set; commensurability; survey
UR - http://eudml.org/doc/275361
ER -

References

top
  1. Agol (I.).— The virtual Haken conjecture, with an appendix by I. Agol, D. Groves, and J. Manning, Documenta Math. 18 (2013), p. 1045-1087. Zbl1286.57019MR3104553
  2. Brooks (R.).— Constructing isospectral manifolds, Amer. Math. Monthly 95, (1988) p. 823-839. Zbl0673.58046MR967343
  3. Brooks (R.).— The Sunada method, in The Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math. 231, p. 25-35 Amer. Math. Soc. (1999). Zbl0935.58018MR1705572
  4. Chinburg (T.), Hamilton (E.), Long (D. D.) and Reid (A. W.).— Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J. 145 (2008), p. 25-44. Zbl1169.53030MR2451288
  5. Conder (M. D. E.).— Hurwitz groups: A brief survey, Bulletin A. M. S. 23, (1990), p. 359-370. Zbl0716.20015MR1041434
  6. Gangolli (R.).— The length spectra of some compact manifolds, J. Diff. Geom. 12 (1977), p. 403-424. Zbl0365.53016MR650997
  7. Guralnick (R. M.).— Subgroups inducing the same permutation representation, J. Algebra 81 (1983), p. 312-319. Zbl0527.20005MR700287
  8. Lakeland (G. S.).— Equivalent trace sets for arithmetic Fuchsian groups, preprint (2013). 
  9. Leininger (C.), McReynolds (D. B.), Neumann (W. D.) and Reid (A. W.).— Length and eigenvalue equivalence, International Math. Research Notices 2007, article ID rnm135, 24 pages, Zbl1158.53032MR2377017
  10. Long (D. D.) and Reid (A. W.).— On Fuchsian groups with the same set of axes, Bull. London Math. Soc. 30 (1998), p. 533-538. Zbl0935.20038MR1643818
  11. Lubotzky (A.), Samuels (B.) and Vishne (U.).— Division algebras and non-commensurable isospectral manifolds, Duke Math. J. 135 (2006), p. 361-379. Zbl1123.58020MR2267287
  12. Maclachlan (C.) and Reid (A. W.).— The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics 219, Springer-Verlag (2003). Zbl1025.57001MR1937957
  13. McReynolds (D. B.).— Isospectral locally symmetric manifolds, to appear Indiana J. Math. Zbl1314.58021MR3233218
  14. Millson (J. J.).— On the first Betti number of a constant negatively curved manifold, Annals of Math. 104 (1976), p. 235-247. Zbl0364.53020MR422501
  15. Neumann (W. D.) and Reid (A. W.).— Arithmetic of hyperbolic manifolds, in TOPOLOGY ’90, Proceedings of the Research Semester in Low Dimensional Topology at Ohio State University. De Gruyter Verlag (1992), p. 273-310. Zbl0777.57007MR1184416
  16. Pesce (H.).— Compacité de l’ensemble des réseaux isospectraux et conséquences, Topology 36 (1997), p. 695-710. Zbl0874.58089MR1422430
  17. Perlis (R.).— On the equation ζ K ( s ) = ζ K ' ( s ) , J. Number Theory 9 (1977), p. 342-360. Zbl0389.12006MR447188
  18. Prasad (G.) and Rapinchuk (A. S.).— Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. I. H. E. S. 109 (2009), p. 113-184. Zbl1176.22011MR2511587
  19. Reid (A. W.).— Isospectrality and commensurability of arithmetic hyperbolic 2 - and 3 -manifolds, Duke Math. J. 65 (1992), p. 215-228. Zbl0776.58040MR1150584
  20. Reid (A. W.).— The geometry and topology of arithmetic hyperbolic 3-manifolds, Proc. Symposium Topology, Complex Analysis and Arithmetic of Hyperbolic Spaces, Kyoto 2006, RIMS Kokyuroku Series 1571 (2007), p. 31-58. 
  21. Schmutz (P.).— Arithmetic groups and the length spectrum of Riemann surfaces, Duke Math. J. 84 (1996), p. 199-215. Zbl0867.30030MR1394753
  22. Sunada (T.).— Riemannian coverings and isospectral manifolds, Annals of Math. 121 (1985), p. 169-186. Zbl0585.58047MR782558
  23. Takeuchi (K.).— A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), p. 600-612. Zbl0311.20030MR398991
  24. Vignéras (M-F.).— Variétiés Riemanniennes isospectrales et non isométriques, Annals of Math. 112 (1980), p. 21-32. Zbl0445.53026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.