Traces, lengths, axes and commensurability
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 5, page 1103-1118
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReid, Alan W.. "Traces, lengths, axes and commensurability." Annales de la faculté des sciences de Toulouse Mathématiques 23.5 (2014): 1103-1118. <http://eudml.org/doc/275361>.
@article{Reid2014,
abstract = {The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.},
author = {Reid, Alan W.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperbolic manifold; length spectrum; length set; axes set; commensurability; survey},
language = {eng},
number = {5},
pages = {1103-1118},
publisher = {Université Paul Sabatier, Toulouse},
title = {Traces, lengths, axes and commensurability},
url = {http://eudml.org/doc/275361},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Reid, Alan W.
TI - Traces, lengths, axes and commensurability
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 5
SP - 1103
EP - 1118
AB - The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.
LA - eng
KW - hyperbolic manifold; length spectrum; length set; axes set; commensurability; survey
UR - http://eudml.org/doc/275361
ER -
References
top- Agol (I.).— The virtual Haken conjecture, with an appendix by I. Agol, D. Groves, and J. Manning, Documenta Math. 18 (2013), p. 1045-1087. Zbl1286.57019MR3104553
- Brooks (R.).— Constructing isospectral manifolds, Amer. Math. Monthly 95, (1988) p. 823-839. Zbl0673.58046MR967343
- Brooks (R.).— The Sunada method, in The Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math. 231, p. 25-35 Amer. Math. Soc. (1999). Zbl0935.58018MR1705572
- Chinburg (T.), Hamilton (E.), Long (D. D.) and Reid (A. W.).— Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J. 145 (2008), p. 25-44. Zbl1169.53030MR2451288
- Conder (M. D. E.).— Hurwitz groups: A brief survey, Bulletin A. M. S. 23, (1990), p. 359-370. Zbl0716.20015MR1041434
- Gangolli (R.).— The length spectra of some compact manifolds, J. Diff. Geom. 12 (1977), p. 403-424. Zbl0365.53016MR650997
- Guralnick (R. M.).— Subgroups inducing the same permutation representation, J. Algebra 81 (1983), p. 312-319. Zbl0527.20005MR700287
- Lakeland (G. S.).— Equivalent trace sets for arithmetic Fuchsian groups, preprint (2013).
- Leininger (C.), McReynolds (D. B.), Neumann (W. D.) and Reid (A. W.).— Length and eigenvalue equivalence, International Math. Research Notices 2007, article ID rnm135, 24 pages, Zbl1158.53032MR2377017
- Long (D. D.) and Reid (A. W.).— On Fuchsian groups with the same set of axes, Bull. London Math. Soc. 30 (1998), p. 533-538. Zbl0935.20038MR1643818
- Lubotzky (A.), Samuels (B.) and Vishne (U.).— Division algebras and non-commensurable isospectral manifolds, Duke Math. J. 135 (2006), p. 361-379. Zbl1123.58020MR2267287
- Maclachlan (C.) and Reid (A. W.).— The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics 219, Springer-Verlag (2003). Zbl1025.57001MR1937957
- McReynolds (D. B.).— Isospectral locally symmetric manifolds, to appear Indiana J. Math. Zbl1314.58021MR3233218
- Millson (J. J.).— On the first Betti number of a constant negatively curved manifold, Annals of Math. 104 (1976), p. 235-247. Zbl0364.53020MR422501
- Neumann (W. D.) and Reid (A. W.).— Arithmetic of hyperbolic manifolds, in TOPOLOGY ’90, Proceedings of the Research Semester in Low Dimensional Topology at Ohio State University. De Gruyter Verlag (1992), p. 273-310. Zbl0777.57007MR1184416
- Pesce (H.).— Compacité de l’ensemble des réseaux isospectraux et conséquences, Topology 36 (1997), p. 695-710. Zbl0874.58089MR1422430
- Perlis (R.).— On the equation , J. Number Theory 9 (1977), p. 342-360. Zbl0389.12006MR447188
- Prasad (G.) and Rapinchuk (A. S.).— Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. I. H. E. S. 109 (2009), p. 113-184. Zbl1176.22011MR2511587
- Reid (A. W.).— Isospectrality and commensurability of arithmetic hyperbolic - and -manifolds, Duke Math. J. 65 (1992), p. 215-228. Zbl0776.58040MR1150584
- Reid (A. W.).— The geometry and topology of arithmetic hyperbolic 3-manifolds, Proc. Symposium Topology, Complex Analysis and Arithmetic of Hyperbolic Spaces, Kyoto 2006, RIMS Kokyuroku Series 1571 (2007), p. 31-58.
- Schmutz (P.).— Arithmetic groups and the length spectrum of Riemann surfaces, Duke Math. J. 84 (1996), p. 199-215. Zbl0867.30030MR1394753
- Sunada (T.).— Riemannian coverings and isospectral manifolds, Annals of Math. 121 (1985), p. 169-186. Zbl0585.58047MR782558
- Takeuchi (K.).— A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), p. 600-612. Zbl0311.20030MR398991
- Vignéras (M-F.).— Variétiés Riemanniennes isospectrales et non isométriques, Annals of Math. 112 (1980), p. 21-32. Zbl0445.53026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.