Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Robert J. Berman; Bo Berndtsson

Annales de la faculté des sciences de Toulouse Mathématiques (2013)

  • Volume: 22, Issue: 4, page 649-711
  • ISSN: 0240-2963

Abstract

top
We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P . Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties ( X , Δ ) saying that ( X , Δ ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when X is smooth and Δ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body P in the case of a given canonical measure on the boundary of P .

How to cite

top

Berman, Robert J., and Berndtsson, Bo. "Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties." Annales de la faculté des sciences de Toulouse Mathématiques 22.4 (2013): 649-711. <http://eudml.org/doc/275385>.

@article{Berman2013,
abstract = {We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in $\mathbb\{R\}^\{n\}$ with exponential non-linearity and target a convex body $P$ is solvable iff $0$ is the barycenter of $P.$ Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties $(X,\Delta )$ saying that $(X,\Delta )$ admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when $X$ is smooth and $\Delta $ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body $P$ in the case of a given canonical measure on the boundary of $P.$},
author = {Berman, Robert J., Berndtsson, Bo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {second boundary value problem; Monge-Ampère equation; toric log Fano varieties; Kähler-Ricci solitons; Kähler-Ricci flow},
language = {eng},
month = {6},
number = {4},
pages = {649-711},
publisher = {Université Paul Sabatier, Toulouse},
title = {Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties},
url = {http://eudml.org/doc/275385},
volume = {22},
year = {2013},
}

TY - JOUR
AU - Berman, Robert J.
AU - Berndtsson, Bo
TI - Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 4
SP - 649
EP - 711
AB - We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in $\mathbb{R}^{n}$ with exponential non-linearity and target a convex body $P$ is solvable iff $0$ is the barycenter of $P.$ Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties $(X,\Delta )$ saying that $(X,\Delta )$ admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when $X$ is smooth and $\Delta $ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body $P$ in the case of a given canonical measure on the boundary of $P.$
LA - eng
KW - second boundary value problem; Monge-Ampère equation; toric log Fano varieties; Kähler-Ricci solitons; Kähler-Ricci flow
UR - http://eudml.org/doc/275385
ER -

References

top
  1. Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001). Zbl1044.53051MR1969265
  2. Ambrosio (L.), Gigli (N.), Savar (G.).— Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp. Zbl1090.35002MR2401600
  3. Artstein-Avidana (S.), Klartag (B.), Milman (V. M.).— The Santal point of a function, and a functional form of the Santal inequality. Mathematika, 51, p. 33-48 (2004). Zbl1121.52021MR2220210
  4. Bakeman (I.J).— Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag, Berlin, (1994). Zbl0815.35001MR1305147
  5. Barthe (F.).— On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, no. 2, p. 335-361 (1998). Zbl0901.26010MR1650312
  6. Batyrev (V.V.).— Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, p. 493-535 (1994). Zbl0829.14023MR1269718
  7. Berman (R.J).— A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics. arXiv:1011.3976. Zbl1286.58010MR3107540
  8. Berman (R.J).— K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint. Zbl06560171
  9. Berman (R.J), Berndtsson (B.).— Moser-Trudinger type inequalities for complex Monge-Ampère operators and Aubin’s “hypothèse fondamentale”. Preprint in 2011 at arXiv:1109.1263. 
  10. Berman (R.J), Berndtsson (B.).— The volume of Kähler-Einstein varieties and convex bodies. arXiv:1112.4445. 
  11. Berman (R.J), Boucksom, (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge-Ampère equations. Publications Math. de l’IHES 117, p. 179-245 (2013). Zbl1277.32049MR3090260
  12. Berman (R.J), Eyssidieux (P.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Convergence of the Kähler-Ricci flow and the Ricci iteration on Log-Fano varities. arXiv:1111.7158. 
  13. Berndtsson (B.).— Curvature of vector bundles associated to holomorphic fibrations. Annals of Math. Vol. 169, p. 531-560 (2009). Zbl1195.32012MR2480611
  14. Berndtsson (B.).— A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem , arXiv:1103.0923. 
  15. Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge-Ampère equations in big cohomology classes. Acta Math. 205, no. 2, p. 199-262 (2010). Zbl1213.32025MR2746347
  16. Brenier (Y.).— Polar factorization and monotone rearrangement of vector valued functions. Communications on pure and applied mathmatics (1991). Zbl0738.46011MR1100809
  17. Burns (D.), Guillemin (Vi.), Lerman (E.).— Kähler metrics on singular toric varieties. Pacific J. Math. 238, no. 1, p. 27-40 (2008). Zbl1157.32019MR2443506
  18. Caffarelli (L. A.).— Interior W { 2 , p } estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131, no. 1, p. 135-150 (1990). Zbl0704.35044MR1038360
  19. Caffarelli (L. A.).— Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math. 44, no. 8-9, p. 965-969 (1991). Zbl0761.35028MR1127042
  20. Caffarelli (L. A.).— A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131, no. 1, p. 129-134 (1990). Zbl0704.35045MR1038359
  21. Caffarelli (L. A.).— The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5, no. 1, p. 99-104 (1992). Zbl0753.35031MR1124980
  22. Cao (H.-D.).— Existence of gradient Kähler-Ricci solitons. Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, (1996). Zbl0868.58047MR1417944
  23. Campana (F.), Guenancia (H.), Păun (M.).— Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. arXiv:1104.4879. To appear in Annales Scientifiques de l’ENS. Zbl1310.32029
  24. Cao (H.-D.), Tian, Gang (T.), Zhu (X.).— Kähler-Ricci solitons on compact complex manifolds with C1(M) &gt; 0. Geom. Funct. Anal. 15, no. 3, p. 697-719 (2005). Zbl1084.53035MR2221147
  25. Cox (D. A.), Little (J. B.), Schenck (H. K.).— Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI (2011). Zbl1223.14001MR2810322
  26. Debarre (O.).— Fano varieties. Higher dimensional varieties and rational points (Budapest, 2001), 93-132, Bolyai Soc. Math. Stud., 12, Springer, Berlin (2003). MR2011745
  27. Demailly (J.-P.), Dinew (S.), Guedj (V.), Pham (H.H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv:1112.1388. Zbl1296.32012
  28. Ding (W.Y), Tian (G.).— Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, no. 2, p. 315-335 (1992). Zbl0779.53044MR1185586
  29. Donaldson (S. K.).— Scalar curvature and stability of toric varities. J. Diff. Geom. 62, p. 289-349 (2002). Zbl1074.53059MR1988506
  30. Donaldson (S. K.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. No. 1, 29-75, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008). Zbl1161.53066MR2483362
  31. Donaldson (S. K.).— Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, no. 1, 83-136 (2009). Zbl1177.53067MR2507220
  32. Donaldson (S. K.).— Kähler metrics with cone singularities along a divisor. arXiv:1102.1196, 2011 - arxiv.org Zbl1326.32039MR2975584
  33. Edmunds (D. E.), Evans (W. D.).— Spectral Theory and Differential Operators, Oxford University Press, New York (1987). Zbl0664.47014MR929030
  34. Feldman (M.), Ilmanen (T.), Knopf (D.).— Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differential Geom. 65, no. 2, p. 169-209 (2003). Zbl1069.53036MR2058261
  35. Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
  36. Gutierrez (C.E.).— The Monge-Ampère equation. Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston, Inc., Boston, MA, 2001. xii+127 pp. ISBN: 0-8176-4177-7 Zbl0989.35052MR1829162
  37. Jeffres (T.D.), Mazzeo (R.), Rubinstein (Y.A).— Kähler-Einstein metrics with edge singularities. Preprint (2011) arXiv:1105.5216. 
  38. Legendre (E.).— Toric Kähler-Einstein metrics and convex compact polytopes. arXiv:1112.3239 Zbl1333.32031
  39. Kreuzer (M.), Skarke (H.).— PALP: A package for analyzing lattice polytopes with applications to toric geometry. Computer Phys. Comm., 157, p. 87-106 (2004). Zbl1196.14007MR2033673
  40. Li (C.).— Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226, no. 6, p. 4921-4932 (2011). Zbl1222.14090MR2775890
  41. Li (C.).— Remarks on logarithmic K-stability. arXiv:1104.042 Zbl1312.32013
  42. Li (C.), Sun (S.).— Conical Kahler-Einstein metric revisited. arXiv:1207.5011 Zbl1296.32008
  43. Li (C.), Xu (C.).— Special test configurations and K-stability of Fano varieties. arXiv:1111.5398 
  44. Mabuchi (T.).— Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, no. 4, p. 705-737 (1987). Zbl0661.53032MR927057
  45. McCann (R. J.).— Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80, no. 2, p. 309-323 (1995). Zbl0873.28009MR1369395
  46. Odaka (Y.).— The GIT stability of Polarized Varieties via Discrepancy. arXiv:0807.1716. Zbl1271.14067MR3010808
  47. Odaka (Y.), Sun (S.).— Testing log K-stability by blowing up formalism. arXiv:1112.1353 Zbl1326.14096
  48. Phong (D. H.), Song (J.), Sturm (J.), Weinkove (B.).— The Moser-Trudinger inequality on Kähler-Einstein manifolds. Amer. J. Math. 130, no. 4, p. 1067-1085 (2008). Zbl1158.58005MR2427008
  49. Rauch (J.), Taylor (B.A.).— The dirichlet problem for the multidimensional monge-ampere equation, Rocky Mountain J. Math. Volume 7, Number 2, p. 345-364 (1977). Zbl0367.35025MR454331
  50. Rockafellar (R. T.).— Convex analysis. Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ (1997). Zbl0932.90001MR1451876
  51. Shi (Y.), Zhu (X.H.).— Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. (to appear). preprint arXiv:math/1102.2764 Zbl1250.53043
  52. Song (J.), Tian (G.).— The Kähler-Ricci flow through singularities. Preprint (2009) arXiv:0909.4898. 
  53. Song (J.), Wang (X.).— The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839 Zbl06553428
  54. Szkelyhidi (G.).— Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147, no. 1, p. 319-331 (2011). Zbl1222.32046MR2771134
  55. Troyanov (M.).— Metrics of constant curvature on a sphere with two conical singularities. Differential geometry (Pescola, 1988), 296-306, Lecture Notes in Math., 1410. Zbl0697.53037MR1034288
  56. Tian (G.).— Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi+101 pp. Zbl0978.53002MR1787650
  57. Tian (G.).— Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, no. 1, p. 1-37 (1997). Zbl0892.53027MR1471884
  58. Tian (G.), Zhu (X.).— Uniqueness of Kähler-Ricci solitons. Acta Math. 184, no. 2, p. 271-305 (2000). Zbl1036.53052MR1768112
  59. Tian (G.), Zhu (X.).— Convergence of Kähler-Ricci flow. J. Amer. Math. Soc. 20, no. 3, p. 675-699 (2007). Zbl1185.53078MR2291916
  60. Wang (X.), Zhu (X.).— Kähler-Ricci solitons on toric manifolds with positive first Chern class, Advances in Mathematics 188, p. 87-103 (2004). Zbl1086.53067MR2084775
  61. Zhou (B.), Zhu (X.).— K-stability on toric manifolds. Proc. Amer. Math. Soc. 136, no. 9, p. 3301-3307 (2008). Zbl1155.53040MR2407096
  62. Zhou (B.), Zhu (X.).— Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219, no. 4 (2008). Zbl1153.53030MR2450612
  63. Zhou (B.), Zhu (X.).— Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. Calc. Var. Partial Differential Equations 32, no. 2, p. 191-217 (2008). Zbl1141.53061MR2389989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.