Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
Robert J. Berman; Bo Berndtsson
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 4, page 649-711
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBerman, Robert J., and Berndtsson, Bo. "Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties." Annales de la faculté des sciences de Toulouse Mathématiques 22.4 (2013): 649-711. <http://eudml.org/doc/275385>.
@article{Berman2013,
abstract = {We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in $\mathbb\{R\}^\{n\}$ with exponential non-linearity and target a convex body $P$ is solvable iff $0$ is the barycenter of $P.$ Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties $(X,\Delta )$ saying that $(X,\Delta )$ admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when $X$ is smooth and $\Delta $ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body $P$ in the case of a given canonical measure on the boundary of $P.$},
author = {Berman, Robert J., Berndtsson, Bo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {second boundary value problem; Monge-Ampère equation; toric log Fano varieties; Kähler-Ricci solitons; Kähler-Ricci flow},
language = {eng},
month = {6},
number = {4},
pages = {649-711},
publisher = {Université Paul Sabatier, Toulouse},
title = {Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties},
url = {http://eudml.org/doc/275385},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Berman, Robert J.
AU - Berndtsson, Bo
TI - Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 4
SP - 649
EP - 711
AB - We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in $\mathbb{R}^{n}$ with exponential non-linearity and target a convex body $P$ is solvable iff $0$ is the barycenter of $P.$ Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties $(X,\Delta )$ saying that $(X,\Delta )$ admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Wang-Zhou concerning the case when $X$ is smooth and $\Delta $ is trivial. Li’s toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain Kähler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the Kähler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu’s boundary value problem on the convex body $P$ in the case of a given canonical measure on the boundary of $P.$
LA - eng
KW - second boundary value problem; Monge-Ampère equation; toric log Fano varieties; Kähler-Ricci solitons; Kähler-Ricci flow
UR - http://eudml.org/doc/275385
ER -
References
top- Abreu (M.).— Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001). Zbl1044.53051MR1969265
- Ambrosio (L.), Gigli (N.), Savar (G.).— Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. x+334 pp. Zbl1090.35002MR2401600
- Artstein-Avidana (S.), Klartag (B.), Milman (V. M.).— The Santal point of a function, and a functional form of the Santal inequality. Mathematika, 51, p. 33-48 (2004). Zbl1121.52021MR2220210
- Bakeman (I.J).— Convex analysis and nonlinear geometric elliptic equations. Springer-Verlag, Berlin, (1994). Zbl0815.35001MR1305147
- Barthe (F.).— On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, no. 2, p. 335-361 (1998). Zbl0901.26010MR1650312
- Batyrev (V.V.).— Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, p. 493-535 (1994). Zbl0829.14023MR1269718
- Berman (R.J).— A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics. arXiv:1011.3976. Zbl1286.58010MR3107540
- Berman (R.J).— K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Preprint. Zbl06560171
- Berman (R.J), Berndtsson (B.).— Moser-Trudinger type inequalities for complex Monge-Ampère operators and Aubin’s “hypothèse fondamentale”. Preprint in 2011 at arXiv:1109.1263.
- Berman (R.J), Berndtsson (B.).— The volume of Kähler-Einstein varieties and convex bodies. arXiv:1112.4445.
- Berman (R.J), Boucksom, (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge-Ampère equations. Publications Math. de l’IHES 117, p. 179-245 (2013). Zbl1277.32049MR3090260
- Berman (R.J), Eyssidieux (P.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Convergence of the Kähler-Ricci flow and the Ricci iteration on Log-Fano varities. arXiv:1111.7158.
- Berndtsson (B.).— Curvature of vector bundles associated to holomorphic fibrations. Annals of Math. Vol. 169, p. 531-560 (2009). Zbl1195.32012MR2480611
- Berndtsson (B.).— A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem , arXiv:1103.0923.
- Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge-Ampère equations in big cohomology classes. Acta Math. 205, no. 2, p. 199-262 (2010). Zbl1213.32025MR2746347
- Brenier (Y.).— Polar factorization and monotone rearrangement of vector valued functions. Communications on pure and applied mathmatics (1991). Zbl0738.46011MR1100809
- Burns (D.), Guillemin (Vi.), Lerman (E.).— Kähler metrics on singular toric varieties. Pacific J. Math. 238, no. 1, p. 27-40 (2008). Zbl1157.32019MR2443506
- Caffarelli (L. A.).— Interior estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131, no. 1, p. 135-150 (1990). Zbl0704.35044MR1038360
- Caffarelli (L. A.).— Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl. Math. 44, no. 8-9, p. 965-969 (1991). Zbl0761.35028MR1127042
- Caffarelli (L. A.).— A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math. (2) 131, no. 1, p. 129-134 (1990). Zbl0704.35045MR1038359
- Caffarelli (L. A.).— The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5, no. 1, p. 99-104 (1992). Zbl0753.35031MR1124980
- Cao (H.-D.).— Existence of gradient Kähler-Ricci solitons. Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, (1996). Zbl0868.58047MR1417944
- Campana (F.), Guenancia (H.), Păun (M.).— Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. arXiv:1104.4879. To appear in Annales Scientifiques de l’ENS. Zbl1310.32029
- Cao (H.-D.), Tian, Gang (T.), Zhu (X.).— Kähler-Ricci solitons on compact complex manifolds with C1(M)0. Geom. Funct. Anal. 15, no. 3, p. 697-719 (2005). Zbl1084.53035MR2221147
- Cox (D. A.), Little (J. B.), Schenck (H. K.).— Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI (2011). Zbl1223.14001MR2810322
- Debarre (O.).— Fano varieties. Higher dimensional varieties and rational points (Budapest, 2001), 93-132, Bolyai Soc. Math. Stud., 12, Springer, Berlin (2003). MR2011745
- Demailly (J.-P.), Dinew (S.), Guedj (V.), Pham (H.H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv:1112.1388. Zbl1296.32012
- Ding (W.Y), Tian (G.).— Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, no. 2, p. 315-335 (1992). Zbl0779.53044MR1185586
- Donaldson (S. K.).— Scalar curvature and stability of toric varities. J. Diff. Geom. 62, p. 289-349 (2002). Zbl1074.53059MR1988506
- Donaldson (S. K.).— Kähler geometry on toric manifolds, and some other manifolds with large symmetry. Handbook of geometric analysis. No. 1, 29-75, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008). Zbl1161.53066MR2483362
- Donaldson (S. K.).— Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, no. 1, 83-136 (2009). Zbl1177.53067MR2507220
- Donaldson (S. K.).— Kähler metrics with cone singularities along a divisor. arXiv:1102.1196, 2011 - arxiv.org Zbl1326.32039MR2975584
- Edmunds (D. E.), Evans (W. D.).— Spectral Theory and Differential Operators, Oxford University Press, New York (1987). Zbl0664.47014MR929030
- Feldman (M.), Ilmanen (T.), Knopf (D.).— Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. J. Differential Geom. 65, no. 2, p. 169-209 (2003). Zbl1069.53036MR2058261
- Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
- Gutierrez (C.E.).— The Monge-Ampère equation. Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston, Inc., Boston, MA, 2001. xii+127 pp. ISBN: 0-8176-4177-7 Zbl0989.35052MR1829162
- Jeffres (T.D.), Mazzeo (R.), Rubinstein (Y.A).— Kähler-Einstein metrics with edge singularities. Preprint (2011) arXiv:1105.5216.
- Legendre (E.).— Toric Kähler-Einstein metrics and convex compact polytopes. arXiv:1112.3239 Zbl1333.32031
- Kreuzer (M.), Skarke (H.).— PALP: A package for analyzing lattice polytopes with applications to toric geometry. Computer Phys. Comm., 157, p. 87-106 (2004). Zbl1196.14007MR2033673
- Li (C.).— Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226, no. 6, p. 4921-4932 (2011). Zbl1222.14090MR2775890
- Li (C.).— Remarks on logarithmic K-stability. arXiv:1104.042 Zbl1312.32013
- Li (C.), Sun (S.).— Conical Kahler-Einstein metric revisited. arXiv:1207.5011 Zbl1296.32008
- Li (C.), Xu (C.).— Special test configurations and K-stability of Fano varieties. arXiv:1111.5398
- Mabuchi (T.).— Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, no. 4, p. 705-737 (1987). Zbl0661.53032MR927057
- McCann (R. J.).— Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80, no. 2, p. 309-323 (1995). Zbl0873.28009MR1369395
- Odaka (Y.).— The GIT stability of Polarized Varieties via Discrepancy. arXiv:0807.1716. Zbl1271.14067MR3010808
- Odaka (Y.), Sun (S.).— Testing log K-stability by blowing up formalism. arXiv:1112.1353 Zbl1326.14096
- Phong (D. H.), Song (J.), Sturm (J.), Weinkove (B.).— The Moser-Trudinger inequality on Kähler-Einstein manifolds. Amer. J. Math. 130, no. 4, p. 1067-1085 (2008). Zbl1158.58005MR2427008
- Rauch (J.), Taylor (B.A.).— The dirichlet problem for the multidimensional monge-ampere equation, Rocky Mountain J. Math. Volume 7, Number 2, p. 345-364 (1977). Zbl0367.35025MR454331
- Rockafellar (R. T.).— Convex analysis. Reprint of the 1970 original. Princeton Landmarks in Mathematics. Princeton Paperbacks. Princeton University Press, Princeton, NJ (1997). Zbl0932.90001MR1451876
- Shi (Y.), Zhu (X.H.).— Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. (to appear). preprint arXiv:math/1102.2764 Zbl1250.53043
- Song (J.), Tian (G.).— The Kähler-Ricci flow through singularities. Preprint (2009) arXiv:0909.4898.
- Song (J.), Wang (X.).— The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839 Zbl06553428
- Szkelyhidi (G.).— Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147, no. 1, p. 319-331 (2011). Zbl1222.32046MR2771134
- Troyanov (M.).— Metrics of constant curvature on a sphere with two conical singularities. Differential geometry (Pescola, 1988), 296-306, Lecture Notes in Math., 1410. Zbl0697.53037MR1034288
- Tian (G.).— Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi+101 pp. Zbl0978.53002MR1787650
- Tian (G.).— Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, no. 1, p. 1-37 (1997). Zbl0892.53027MR1471884
- Tian (G.), Zhu (X.).— Uniqueness of Kähler-Ricci solitons. Acta Math. 184, no. 2, p. 271-305 (2000). Zbl1036.53052MR1768112
- Tian (G.), Zhu (X.).— Convergence of Kähler-Ricci flow. J. Amer. Math. Soc. 20, no. 3, p. 675-699 (2007). Zbl1185.53078MR2291916
- Wang (X.), Zhu (X.).— Kähler-Ricci solitons on toric manifolds with positive first Chern class, Advances in Mathematics 188, p. 87-103 (2004). Zbl1086.53067MR2084775
- Zhou (B.), Zhu (X.).— K-stability on toric manifolds. Proc. Amer. Math. Soc. 136, no. 9, p. 3301-3307 (2008). Zbl1155.53040MR2407096
- Zhou (B.), Zhu (X.).— Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219, no. 4 (2008). Zbl1153.53030MR2450612
- Zhou (B.), Zhu (X.).— Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. Calc. Var. Partial Differential Equations 32, no. 2, p. 191-217 (2008). Zbl1141.53061MR2389989
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.