[unknown]
- [1] Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-29
- ISSN: 0373-0956
Access Full Article
topHow to cite
topLombardo, Davide. "null." Annales de l’institut Fourier 0.0 (0): 1-29. <http://eudml.org/doc/275387>.
@article{Lombardo0,
affiliation = {Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)},
author = {Lombardo, Davide},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-29},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275387},
volume = {0},
year = {0},
}
TY - JOUR
AU - Lombardo, Davide
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 29
LA - eng
UR - http://eudml.org/doc/275387
ER -
References
top- Grzegorz Banaszak, Wojciech Gajda, Piotr Krasoń, On the image of -adic Galois representations for abelian varieties of type I and II, Doc. Math. (2006), 35-75 (electronic) Zbl1202.14042
- Grzegorz Banaszak, Wojciech Gajda, Piotr Krasoń, On the image of Galois -adic representations for abelian varieties of type III, Tohoku Math. J. (2) 62 (2010), 163-189 Zbl1202.14042
- Fedor Alekseivich Bogomolov, Sur l’algébricité des représentations -adiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A701-A703 Zbl0457.14020
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, (2005), Springer-Verlag, Berlin Zbl1139.17002
- W. C. Chi, -adic and -adic representations associated to abelian varieties defined over number fields, Amer. J. Math. 114 (1992), 315-353 Zbl0795.14024
- Pierre Deligne, James S. Milne, Arthur Ogus, Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, 900 (1982), Springer-Verlag, Berlin-New York Zbl0465.00010
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366
- G. Faltings, Complements to Mordell, Rational points (Bonn, 1983/1984) (1984), 203-227, Vieweg, Braunschweig
- Fumio Hazama, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1985), 487-520 Zbl0591.14006
- Fumio Hazama, Algebraic cycles on nonsimple abelian varieties, Duke Math. J. 58 (1989), 31-37 Zbl0697.14028
- Takashi Ichikawa, Algebraic groups associated with abelian varieties, Math. Ann. 289 (1991), 133-142 Zbl0697.14031
- M. Larsen, R. Pink, Determining representations from invariant dimensions, Invent. Math. 102 (1990), 377-398 Zbl0687.22004
- M. Larsen, R. Pink, On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math. 107 (1992), 603-636 Zbl0778.11036
- M. Larsen, R. Pink, Abelian varieties, -adic representations, and -independence, Math. Ann. 302 (1995), 561-579 Zbl0867.14019
- B. J. J. Moonen, Notes on Mumford-Tate Groups
- B. J. J. Moonen, Yu. G. Zarhin, Hodge classes and Tate classes on simple abelian fourfolds, Duke Math. J. 77 (1995), 553-581 Zbl0874.14034
- B. J. J. Moonen, Yu. G. Zarhin, Hodge classes on abelian varieties of low dimension, Math. Ann. 315 (1999), 711-733 Zbl0947.14005
- L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque (1985) Zbl0595.14032
- V. Kumar Murty, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), 197-206 Zbl0521.14004
- R. Noot, Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), 161-171 Zbl0868.14021
- Richard Pink, -adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture, J. Reine Angew. Math. 495 (1998), 187-237 Zbl0920.14006
- Richard Pink, On Weil restriction of reductive groups and a theorem of Prasad, Math. Z. 248 (2004), 449-457 Zbl1075.20015
- H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type, Ann. of Math. (2) 88 (1968), 161-180 Zbl0201.23201
- J. J. Ramón Marí, On the Hodge conjecture for products of certain surfaces, Collect. Math. 59 (2008), 1-26 Zbl1188.14004
- Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), 751-804 Zbl0348.14022
- Kenneth A. Ribet, Hodge classes on certain types of abelian varieties, Amer. J. Math. 105 (1983), 523-538 Zbl0586.14003
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012
- Jean-Pierre Serre, Abelian -adic representations and elliptic curves, 7 (1998), A K Peters, Ltd., Wellesley, MA Zbl0902.14016
- Goro Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149-192 Zbl0142.05402
- Tetsuji Shioda, Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1981/82), 65-80 Zbl0515.14005
- Emmanuel Ullmo, Andrei Yafaev, Mumford-Tate and generalised Shafarevich conjectures, Ann. Math. Qué. 37 (2013), 255-284 Zbl06350059
- A. Vasiu, Some cases of the Mumford-Tate conjecture and Shimura varieties, Indiana Univ. Math. J. 57 (2008), 1-75 Zbl1173.11039
- Yu. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 272-277, 471
- Yu. G. Zarhin, Abelian varieties in characteristic , Mat. Zametki 19 (1976), 393-400
- Yu. G. Zarhin, Torsion of abelian varieties in finite characteristic, Math. Notes 22 (1978), 493-498
- Yu. G. Zarhin, Abelian varieties, -adic representations and Lie algebras. Rank independence on , Invent. Math. 55 (1979), 165-176
- Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 264-304
- Yu. G. Zarhin, Abelian varieties without homotheties, Math. Res. Lett. 14 (2007), 157-164 Zbl1128.11031
- B. Zhao, On the Mumford-Tate conjecture of Abelian fourfolds, (2013)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.