[unknown]

Davide Lombardo[1]

  • [1] Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-29
  • ISSN: 0373-0956

How to cite

top

Lombardo, Davide. "null." Annales de l’institut Fourier 0.0 (0): 1-29. <http://eudml.org/doc/275387>.

@article{Lombardo0,
affiliation = {Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)},
author = {Lombardo, Davide},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-29},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275387},
volume = {0},
year = {0},
}

TY - JOUR
AU - Lombardo, Davide
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 29
LA - eng
UR - http://eudml.org/doc/275387
ER -

References

top
  1. Grzegorz Banaszak, Wojciech Gajda, Piotr Krasoń, On the image of -adic Galois representations for abelian varieties of type I and II, Doc. Math. (2006), 35-75 (electronic) Zbl1202.14042
  2. Grzegorz Banaszak, Wojciech Gajda, Piotr Krasoń, On the image of Galois l -adic representations for abelian varieties of type III, Tohoku Math. J. (2) 62 (2010), 163-189 Zbl1202.14042
  3. Fedor Alekseivich Bogomolov, Sur l’algébricité des représentations l -adiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A701-A703 Zbl0457.14020
  4. Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, (2005), Springer-Verlag, Berlin Zbl1139.17002
  5. W. C. Chi, l -adic and λ -adic representations associated to abelian varieties defined over number fields, Amer. J. Math. 114 (1992), 315-353 Zbl0795.14024
  6. Pierre Deligne, James S. Milne, Arthur Ogus, Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, 900 (1982), Springer-Verlag, Berlin-New York Zbl0465.00010
  7. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366 
  8. G. Faltings, Complements to Mordell, Rational points (Bonn, 1983/1984) (1984), 203-227, Vieweg, Braunschweig 
  9. Fumio Hazama, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1985), 487-520 Zbl0591.14006
  10. Fumio Hazama, Algebraic cycles on nonsimple abelian varieties, Duke Math. J. 58 (1989), 31-37 Zbl0697.14028
  11. Takashi Ichikawa, Algebraic groups associated with abelian varieties, Math. Ann. 289 (1991), 133-142 Zbl0697.14031
  12. M. Larsen, R. Pink, Determining representations from invariant dimensions, Invent. Math. 102 (1990), 377-398 Zbl0687.22004
  13. M. Larsen, R. Pink, On l -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math. 107 (1992), 603-636 Zbl0778.11036
  14. M. Larsen, R. Pink, Abelian varieties, -adic representations, and -independence, Math. Ann. 302 (1995), 561-579 Zbl0867.14019
  15. B. J. J. Moonen, Notes on Mumford-Tate Groups 
  16. B. J. J. Moonen, Yu. G. Zarhin, Hodge classes and Tate classes on simple abelian fourfolds, Duke Math. J. 77 (1995), 553-581 Zbl0874.14034
  17. B. J. J. Moonen, Yu. G. Zarhin, Hodge classes on abelian varieties of low dimension, Math. Ann. 315 (1999), 711-733 Zbl0947.14005
  18. L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque (1985) Zbl0595.14032
  19. V. Kumar Murty, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), 197-206 Zbl0521.14004
  20. R. Noot, Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), 161-171 Zbl0868.14021
  21. Richard Pink, l -adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture, J. Reine Angew. Math. 495 (1998), 187-237 Zbl0920.14006
  22. Richard Pink, On Weil restriction of reductive groups and a theorem of Prasad, Math. Z. 248 (2004), 449-457 Zbl1075.20015
  23. H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type, Ann. of Math. (2) 88 (1968), 161-180 Zbl0201.23201
  24. J. J. Ramón Marí, On the Hodge conjecture for products of certain surfaces, Collect. Math. 59 (2008), 1-26 Zbl1188.14004
  25. Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), 751-804 Zbl0348.14022
  26. Kenneth A. Ribet, Hodge classes on certain types of abelian varieties, Amer. J. Math. 105 (1983), 523-538 Zbl0586.14003
  27. Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331 Zbl0235.14012
  28. Jean-Pierre Serre, Abelian l -adic representations and elliptic curves, 7 (1998), A K Peters, Ltd., Wellesley, MA Zbl0902.14016
  29. Goro Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149-192 Zbl0142.05402
  30. Tetsuji Shioda, Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1981/82), 65-80 Zbl0515.14005
  31. Emmanuel Ullmo, Andrei Yafaev, Mumford-Tate and generalised Shafarevich conjectures, Ann. Math. Qué. 37 (2013), 255-284 Zbl06350059
  32. A. Vasiu, Some cases of the Mumford-Tate conjecture and Shimura varieties, Indiana Univ. Math. J. 57 (2008), 1-75 Zbl1173.11039
  33. Yu. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 272-277, 471 
  34. Yu. G. Zarhin, Abelian varieties in characteristic p , Mat. Zametki 19 (1976), 393-400 
  35. Yu. G. Zarhin, Torsion of abelian varieties in finite characteristic, Math. Notes 22 (1978), 493-498 
  36. Yu. G. Zarhin, Abelian varieties, l -adic representations and Lie algebras. Rank independence on l , Invent. Math. 55 (1979), 165-176 
  37. Yu. G. Zarhin, Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 264-304 
  38. Yu. G. Zarhin, Abelian varieties without homotheties, Math. Res. Lett. 14 (2007), 157-164 Zbl1128.11031
  39. B. Zhao, On the Mumford-Tate conjecture of Abelian fourfolds, (2013) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.