[unknown]

Bruno de Mendonça Braga[1]

  • [1] Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago 851 S. Morgan St. Chicago, IL 60607-7045 (USA)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-23
  • ISSN: 0373-0956

How to cite

top

Braga, Bruno de Mendonça. "null." Annales de l’institut Fourier 0.0 (0): 1-23. <http://eudml.org/doc/275388>.

@article{Braga0,
affiliation = {Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago 851 S. Morgan St. Chicago, IL 60607-7045 (USA)},
author = {Braga, Bruno de Mendonça},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-23},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275388},
volume = {0},
year = {0},
}

TY - JOUR
AU - Braga, Bruno de Mendonça
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 23
LA - eng
UR - http://eudml.org/doc/275388
ER -

References

top
  1. Fernando Albiac, Nigel J. Kalton, Topics in Banach space theory, 233 (2006), Springer, New York Zbl1094.46002
  2. Spiros A. Argyros, Pandelis Dodos, Genericity and amalgamation of classes of Banach spaces, Adv. Math. 209 (2007), 666-748 Zbl1109.03047
  3. Benoît Bossard, An ordinal version of some applications of the classical interpolation theorem, Fund. Math. 152 (1997), 55-74 Zbl0901.46011
  4. W. J. Davis, T. Figiel, W. B. Johnson, A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327 Zbl0306.46020
  5. Pandelis Dodos, Banach spaces and descriptive set theory: selected topics, 1993 (2010), Springer-Verlag, Berlin Zbl1215.46002
  6. Pandelis Dodos, Definability under duality, Houston J. Math. 36 (2010), 781-792 Zbl1226.03053
  7. Pandelis Dodos, Valentin Ferenczi, Some strongly bounded classes of Banach spaces, Fund. Math. 193 (2007), 171-179 Zbl1115.03061
  8. Alexander S. Kechris, Classical descriptive set theory, 156 (1995), Springer-Verlag, New York Zbl0819.04002
  9. Gideon Schechtman, On Pełczyński’s paper “Universal bases” (Studia Math. 32 (1969), 247–268), Israel J. Math. 22 (1975), 181-184 
  10. Th. Sclumprecht, Notes on Descriptive Set Theory, and Applications to Banach Spaces 
  11. M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379 Zbl0706.46015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.