Optimal designs for the estimation of polynomial functionals

Andrej Pázman

Kybernetika (1981)

  • Volume: 17, Issue: 1, page 16-31
  • ISSN: 0023-5954

How to cite

top

Pázman, Andrej. "Optimal designs for the estimation of polynomial functionals." Kybernetika 17.1 (1981): 16-31. <http://eudml.org/doc/27539>.

@article{Pázman1981,
author = {Pázman, Andrej},
journal = {Kybernetika},
keywords = {estimation of polynomial functionals; generalized regression experiments; minimal variances of unbiased estimates; infinite dimensional regression; algorithm; convergence; estimability of homogeneous functionals},
language = {eng},
number = {1},
pages = {16-31},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimal designs for the estimation of polynomial functionals},
url = {http://eudml.org/doc/27539},
volume = {17},
year = {1981},
}

TY - JOUR
AU - Pázman, Andrej
TI - Optimal designs for the estimation of polynomial functionals
JO - Kybernetika
PY - 1981
PB - Institute of Information Theory and Automation AS CR
VL - 17
IS - 1
SP - 16
EP - 31
LA - eng
KW - estimation of polynomial functionals; generalized regression experiments; minimal variances of unbiased estimates; infinite dimensional regression; algorithm; convergence; estimability of homogeneous functionals
UR - http://eudml.org/doc/27539
ER -

References

top
  1. Chien-Fu Wu H. P. Wynn, The convergence of general steplength algorithms for regular optimum design criteria, Ann. Statist. 6 (1978), 1273-1285. (1978) MR0523762
  2. V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York 1972. (1972) MR0403103
  3. J. Kiefer, General equivalence theory for optimal designs, Ann. Statist. 2 (1974), 849-879. (1974) MR0356386
  4. J. Neveu, Processus aléatoires gaussiens, Presses de l'Univ. Montreal, 1968. (1968) Zbl0192.54701MR0272042
  5. A. Pázman, A convergence theorem in the theory of D-optimum experimental designs, Ann. Statist. 2 (1974), 216-218. (1974) MR0345348
  6. A. Pázman, Plans d'expérience pour les estimations de fonctionnelles non-linéaires, Ann. Inst. H. Poincare XIIIB (1977), 259-267. (1977) MR0455230
  7. A. Pázman, Hilbert-space methods in experimental design, Kybernetika 14 (1978), 73-84. (1978) MR0478496
  8. A. Pázman, Singular experimental designs, (Standard and Hilbert-space approaches). Math. Operationsforsch. u. Statist. Ser. Statistics 11 (1980), 137-149. (1980) MR0606165

NotesEmbed ?

top

You must be logged in to post comments.