Pentagramma mirificum and elliptic functions (Napier, Gauss, Poncelet, Jacobi, ...)
- [1] Institut des Mathématiques de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse, France
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 2, page 353-375
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Baxter (R.J.).— Exactly solved models in statistical mechanics, Academic Press (1982). Zbl0723.60120MR690578
- Bos (H.J.M.), Kers (C.), Oort (F.), Raven (D.W.).— Poncelet’s closure theorem, Expos. Math. 5, p. 289-364 (1987). Zbl0633.51014MR917349
- Bowditch (B.H.).— A proof of McShane’s identity via Markoff triples, Bull. London Math. Soc. 28, p. 73-78 (1996). Zbl0854.57009MR1356829
- Coxeter (H.S.M.).— Frieze patterns, Acta Arithm. XVIII, p. 297-304 (1971). Zbl0217.18101MR286771
- Gauss (C.F.).— Pentagramma Mirificum, Werke, Bd. III, p. 481-490; Bd VIII, p. 106-111.
- Flatto (L.).— Poncelet’s theorem, AMS, Providence (RI) (2009). Zbl1157.51001MR2465164
- Fricke (R.).— Bemerkungen zu [5], ibid. Bd. VIII, p. 112-117.
- Gliozzi (F.), Tateo (R.).— ADE functional dilogarithm identities and integrable models, hep-th/9411203.
- Greenhill (A.G.).— Applications of elliptic functions, 1892 (Dover, 1959). Zbl0087.08501MR111864
- Griffiths (P.), Harris (J.).— On Cayleys explicit solution to Poncelet’s porism, Enseign. Math. (2) 24, p. 31-40 (1978). Zbl0384.14009MR497281
- Hardy (G.H.).— Ramanujan, Cambridge, 1940 (AMS Chelsea, 1991). Zbl0025.10505
- Jacobi (C.G.J.).— Fundamenta nova theoriae functionum ellipticarum.
- Jacobi (C.G.J.).— Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Crelles J. 3 (1828).
- Kirillov (A.).— Dilogarithm identities, hept-th/9408113.
- Litttlewood (J.E.).— A mathematical miscellany, Review of Collected Papers of S. Ramanujan, Mathematical Gazette, April 1929, v. XIV, no. 200.
- Napier (J.).— Mirifici Logarithmorum canonis descriptio, Lugdini (1619).
- Onsager (L.).— Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, p. 117-149 (1944). Zbl0060.46001MR10315
- Snape (J.).— Applications of elliptic functions in classical and algebraic geometry, Dissertation, Durham.