[unknown]
Rob de Jeu[1]; Tejaswi Navilarekallu[1]
- [1] Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-53
- ISSN: 0373-0956
Access Full Article
topHow to cite
topde Jeu, Rob, and Navilarekallu, Tejaswi. "null." Annales de l’institut Fourier 0.0 (0): 1-53. <http://eudml.org/doc/275400>.
@article{deJeu0,
affiliation = {Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands); Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands)},
author = {de Jeu, Rob, Navilarekallu, Tejaswi},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-53},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275400},
volume = {0},
year = {0},
}
TY - JOUR
AU - de Jeu, Rob
AU - Navilarekallu, Tejaswi
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 53
LA - eng
UR - http://eudml.org/doc/275400
ER -
References
top- J. Barrett, D. Burns, Annihilating Selmer modules, J. Reine Angew. Math. 675 (2013), 191-222 Zbl1276.11173
- P. Báyer, J. Neukirch, On values of zeta functions and -adic Euler characteristics, Invent. Math. 50 (1978/79), 35-64 Zbl0409.12018
- A. Besser, P. Buckingham, R. de Jeu, X.-F. Roblot, On the -adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009), 375-434 Zbl1192.19003
- Spencer Bloch, Kazuya Kato, -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, (1965), Hermann, Paris Zbl0141.03501
- D. Burns, On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math. 698 (2015), 105-159 Zbl1322.11110
- D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic) Zbl1052.11077
- D. Burns, C. Greither, On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math. 153 (2003), 303-359 Zbl1142.11076
- T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of -groups of rings of integers, -Theory 14 (1998), 319-369 Zbl0943.11051
- J. Coates, S. Lichtenbaum, On -adic zeta functions, Ann. of Math. (2) 98 (1973), 498-550 Zbl0279.12005
- B. Ferrero, L. Washington, The Iwasawa invariant vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), 377-395 Zbl0443.12001
- Matthias Flach, Euler characteristics in relative -groups, Bull. London Math. Soc. 32 (2000), 272-284 Zbl1017.19002
- Matthias Flach, The equivariant Tamagawa number conjecture: a survey, Stark’s conjectures: recent work and new directions 358 (2004), 79-125, Amer. Math. Soc., Providence, RI Zbl1070.11025
- Matthias Flach, On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math. 661 (2011), 1-36 Zbl1242.11083
- J.-M. Fontaine, Valeurs spéciales des fonctions des motifs, Astérisque (1992), Exp. No. 751, 4, 205-249
- R. Greenberg, On -adic -functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139-158
- R. Greenberg, On -adic Artin -functions, Nagoya Math. J. 89 (1983), 77-87
- A. Huber, G. Kings, Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J. 119 (2003), 393-464 Zbl1044.11095
- Cohomologie -adique et fonctions , (1977), IllusieLucL.
- K. Iwasawa, On -extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326 Zbl0285.12008
- Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207-245 Zbl0649.14011
- F. F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19-55 Zbl0343.14008
- S. Lichtenbaum, On the values of zeta and -functions. I, Ann. of Math. (2) 96 (1972), 338-360 Zbl0251.12002
- J. S. Milne, Étale cohomology, (1980), Princeton University Press, Princeton, N.J.
- J. S. Milne, Arithmetic duality theorems, 1 (1986), Academic Press, Inc., Boston, MA Zbl0613.14019
- J. Neukirch, Algebraic number theory, 322 (1999), Springer-Verlag, Berlin Zbl0956.11021
- J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001
- B. Perrin-Riou, -adic -functions and -adic representations, 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris
- K. Ribet, Report on -adic -functions over totally real fields, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) 61 (1979), 177-192, Soc. Math. France, Paris Zbl0408.12016
- A. Schmidt, On the relation between 2 and in Galois cohomology of number fields, Compositio Math. 133 (2002), 267-288 Zbl1021.11029
- J.-P. Serre, Linear representations of finite groups, (1977), Springer-Verlag, New York Zbl0355.20006
- J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) (1963), 288-295, Inst. Mittag-Leffler, Djursholm Zbl0126.07002
- J. Tate, Relations between and Galois cohomology, Invent. Math. 36 (1976), 257-274
- L. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0966.11047
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540 Zbl0719.11071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.