[unknown]

Rob de Jeu[1]; Tejaswi Navilarekallu[1]

  • [1] Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands)

Annales de l’institut Fourier (0)

  • Volume: 0, Issue: 0, page 1-53
  • ISSN: 0373-0956

How to cite

top

de Jeu, Rob, and Navilarekallu, Tejaswi. "null." Annales de l’institut Fourier 0.0 (0): 1-53. <http://eudml.org/doc/275400>.

@article{deJeu0,
affiliation = {Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands); Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands)},
author = {de Jeu, Rob, Navilarekallu, Tejaswi},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-53},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275400},
volume = {0},
year = {0},
}

TY - JOUR
AU - de Jeu, Rob
AU - Navilarekallu, Tejaswi
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 53
LA - eng
UR - http://eudml.org/doc/275400
ER -

References

top
  1. J. Barrett, D. Burns, Annihilating Selmer modules, J. Reine Angew. Math. 675 (2013), 191-222 Zbl1276.11173
  2. P. Báyer, J. Neukirch, On values of zeta functions and l -adic Euler characteristics, Invent. Math. 50 (1978/79), 35-64 Zbl0409.12018
  3. A. Besser, P. Buckingham, R. de Jeu, X.-F. Roblot, On the p -adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009), 375-434 Zbl1192.19003
  4. Spencer Bloch, Kazuya Kato, L -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001
  5. N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, (1965), Hermann, Paris Zbl0141.03501
  6. D. Burns, On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math. 698 (2015), 105-159 Zbl1322.11110
  7. D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), 501-570 (electronic) Zbl1052.11077
  8. D. Burns, C. Greither, On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math. 153 (2003), 303-359 Zbl1142.11076
  9. T. Chinburg, M. Kolster, G. Pappas, V. Snaith, Galois structure of K -groups of rings of integers, -Theory 14 (1998), 319-369 Zbl0943.11051
  10. J. Coates, S. Lichtenbaum, On l -adic zeta functions, Ann. of Math. (2) 98 (1973), 498-550 Zbl0279.12005
  11. B. Ferrero, L. Washington, The Iwasawa invariant μ p vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), 377-395 Zbl0443.12001
  12. Matthias Flach, Euler characteristics in relative K -groups, Bull. London Math. Soc. 32 (2000), 272-284 Zbl1017.19002
  13. Matthias Flach, The equivariant Tamagawa number conjecture: a survey, Stark’s conjectures: recent work and new directions 358 (2004), 79-125, Amer. Math. Soc., Providence, RI Zbl1070.11025
  14. Matthias Flach, On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math. 661 (2011), 1-36 Zbl1242.11083
  15. J.-M. Fontaine, Valeurs spéciales des fonctions L des motifs, Astérisque (1992), Exp. No. 751, 4, 205-249 
  16. R. Greenberg, On p -adic L -functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139-158 
  17. R. Greenberg, On p -adic Artin L -functions, Nagoya Math. J. 89 (1983), 77-87 
  18. A. Huber, G. Kings, Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J. 119 (2003), 393-464 Zbl1044.11095
  19. Cohomologie l -adique et fonctions L , (1977), IllusieLucL. 
  20. K. Iwasawa, On l -extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326 Zbl0285.12008
  21. Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207-245 Zbl0649.14011
  22. F. F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19-55 Zbl0343.14008
  23. S. Lichtenbaum, On the values of zeta and L -functions. I, Ann. of Math. (2) 96 (1972), 338-360 Zbl0251.12002
  24. J. S. Milne, Étale cohomology, (1980), Princeton University Press, Princeton, N.J. 
  25. J. S. Milne, Arithmetic duality theorems, 1 (1986), Academic Press, Inc., Boston, MA Zbl0613.14019
  26. J. Neukirch, Algebraic number theory, 322 (1999), Springer-Verlag, Berlin Zbl0956.11021
  27. J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields, 323 (2008), Springer-Verlag, Berlin Zbl1136.11001
  28. B. Perrin-Riou, p -adic L -functions and p -adic representations, 3 (2000), American Mathematical Society, Providence, RI; Société Mathématique de France, Paris 
  29. K. Ribet, Report on p -adic L -functions over totally real fields, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) 61 (1979), 177-192, Soc. Math. France, Paris Zbl0408.12016
  30. A. Schmidt, On the relation between 2 and in Galois cohomology of number fields, Compositio Math. 133 (2002), 267-288 Zbl1021.11029
  31. J.-P. Serre, Linear representations of finite groups, (1977), Springer-Verlag, New York Zbl0355.20006
  32. J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) (1963), 288-295, Inst. Mittag-Leffler, Djursholm Zbl0126.07002
  33. J. Tate, Relations between K 2 and Galois cohomology, Invent. Math. 36 (1976), 257-274 
  34. L. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0966.11047
  35. A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540 Zbl0719.11071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.