Integrable Osculating Plane Distributions
- [1] Departamento de Matemática – ICEX – UFMG, Cep 31270-901 – Belo Horizonte, Brazil
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 1, page 197-218
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topNonato Costa, Gilcione. "Integrable Osculating Plane Distributions." Annales de la faculté des sciences de Toulouse Mathématiques 22.1 (2013): 197-218. <http://eudml.org/doc/275406>.
@article{NonatoCosta2013,
abstract = {We give a necessary condition for a holomorphic vector field to induce an integrable osculating plane distribution and, using this condition, we give a characterization of such fields. We also give a generic classification for vector fields which have two invariant coordinate planes.},
affiliation = {Departamento de Matemática – ICEX – UFMG, Cep 31270-901 – Belo Horizonte, Brazil},
author = {Nonato Costa, Gilcione},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {holomorphic vector field; osculating plane},
language = {eng},
month = {6},
number = {1},
pages = {197-218},
publisher = {Université Paul Sabatier, Toulouse},
title = {Integrable Osculating Plane Distributions},
url = {http://eudml.org/doc/275406},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Nonato Costa, Gilcione
TI - Integrable Osculating Plane Distributions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 1
SP - 197
EP - 218
AB - We give a necessary condition for a holomorphic vector field to induce an integrable osculating plane distribution and, using this condition, we give a characterization of such fields. We also give a generic classification for vector fields which have two invariant coordinate planes.
LA - eng
KW - holomorphic vector field; osculating plane
UR - http://eudml.org/doc/275406
ER -
References
top- Bott (R.), Tu (L.W.).— Differential Forms in Algebraic Topology, Graduate Texts in Mathematics 82, Springer (1982). Zbl0496.55001MR658304
- Cerveau (D.).— Une liste de problèmes, Ecuaciones Diferenciales Singularidades, Universidad de Valladolid, p. 455-460 (1997).
- Mol (R. S.).— Flags of holomorphic foliations, Annals of the Brazilian Academy of Science, 83(3), p. 775-786 (2011). Zbl1262.32021MR2867172
- Nonato Costa (G.).— Holomorphic foliations by curves on with non-isolated singularities, Annales de la Faculté des Sciences de Toulouse, S. 6, 15 no. 2, p. 297-321 (2006). Zbl1129.32018MR2244219
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.