Schrödinger maps
- [1] University of California, Berkeley
Journées Équations aux dérivées partielles (2012)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., to appear Zbl1233.35112
- I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Equivariant Schrödinger Maps in two spatial dimensions, preprint Zbl1326.35087MR3090782
- I. Bejenaru, D. Tataru, Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions, AMS Memoirs, to appear Zbl1303.58009
- S. Gustafson, K. Nakanishi, T. Tsai, Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on ., preprint available on arxiv. Zbl1205.35294
- J. Krieger, W. Schlag Concentration compactness for critical wave maps, EMS Monographs in Mathematics, 2012 Zbl06004782MR2895939
- F. Merle, P. Raphaël, I. Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, preprint. Zbl1213.35139MR2783320
- Sterbenz, Jacob, Tataru, Daniel . Regularity of wave-maps in dimension 2+1. Comm. Math. Phys. 298 (2010), no. 1, 231–264. Zbl1218.35057MR2657818
- Sterbenz, Jacob, Tataru, Daniel . Energy dispersed large data wave maps in 2+1 dimensions. Comm. Math. Phys. 298 (2010), no. 1, 139–230. Zbl1218.35129MR2657817
- T. Tao, Gauges for the Schrödinger map, http://www.math.ucla.edu/ tao/preprints/Expository (unpublished).
- T. Tao. Global regularity of wave maps VII. Control of delocalised or dispersed solutions arXiv:0908.0776