Recent results on KAM for multidimensional PDEs
- [1] Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France
Journées Équations aux dérivées partielles (2014)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topGrébert, Benoît. "Recent results on KAM for multidimensional PDEs." Journées Équations aux dérivées partielles (2014): 1-12. <http://eudml.org/doc/275420>.
@article{Grébert2014,
abstract = {In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the $d$-dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When $d\ge 2$ we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.},
affiliation = {Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France},
author = {Grébert, Benoît},
journal = {Journées Équations aux dérivées partielles},
keywords = {Multidimensional PDEs; Quasi periodic solutions; KAM theory; stable and unstable tori},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Recent results on KAM for multidimensional PDEs},
url = {http://eudml.org/doc/275420},
year = {2014},
}
TY - JOUR
AU - Grébert, Benoît
TI - Recent results on KAM for multidimensional PDEs
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the $d$-dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When $d\ge 2$ we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.
LA - eng
KW - Multidimensional PDEs; Quasi periodic solutions; KAM theory; stable and unstable tori
UR - http://eudml.org/doc/275420
ER -
References
top- V.I. Arnold, Mathematical methods in classical mechanics; 3d edition, Springer-Verlag, Berlin, 2006. Zbl0386.70001
- M. Berti, P. Bolle, Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity25 (2012), 2579-2613. Zbl1262.35015MR2967117
- M. Berti, P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on with a multiplicative potential, J. Eur. Math. Soc.15 (2013), 229-286. Zbl1260.35196MR2998835
- M. Berti, L. Corsi, M. Procesi, An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds, Comm. Math. Phys (2014). Zbl1312.35157
- M. Berti, M. Procesi, Nonlinear wave and Schrödinger equations on compact Lie groups and Homogeneous spaces, Duke Math. J.159, 479-538 (2011). Zbl1260.37045MR2831876
- J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. Math.148 (1998), 363-439. Zbl0928.35161MR1668547
- J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematical Studies, Princeton, 2004. Zbl1137.35001MR2100420
- R. De La Llave, C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, MPEJ10 (2004), paper 5. Zbl1136.37349MR2111299
- J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Comm. Partial Differential Equations39 (2014), 1Ð33. Zbl1291.35254MR3169778
- L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, in Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001. Zbl1015.34028MR1858550
- L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 2: a normal form theorem, preprint. MR1115677
- L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 1: small-amplitude solutions, preprint.
- L. H. Eliasson and S. B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys.286 (2009), 125–135. Zbl1176.35141MR2470926
- L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math 172 (2010), 371-435. Zbl1201.35177MR2680422
- E. Fermi, J. R. Pasta and S. M. Ulam, Studies of nonlinear problems. Collected works of E. Fermi, vol.2. Chicago University Press, Chicago, 1965. Zbl0353.70028
- G. Gallavotti (editor). The Fermi-Pasta-Ulam problem Lectures Notes in Physics728 Springer-Verlag, Berlin, 2008 Zbl1138.81004MR2402016
- J. Geng and J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343–372. Zbl1103.37047MR2200264
- J. Geng and J. You, KAM tori for higher dimensional beam equations with constant potentials, Nonlinearity, 19 (2006), 2405–2423. Zbl1190.37082MR2260269
- B. Grébert, KAM for KG on and for the quantum harmonic oscillator on , preprint arXiv:1410.8084.
- B. Grébert and L. Thomann, KAM for the Quantum Harmonic Oscillator, Comm. Math. Phys., 307 (2011), 383–427. Zbl1250.81033MR2837120
- S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21 (1987), 192–205. Zbl0716.34083MR911772
- S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. Zbl0784.58028MR1290785
- S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math.143 (1996), 149–179. Zbl0847.35130MR1370761
- T. Kappeler and J. Pöschel, KAM & KdV, Springer-Verlag, Berlin, 2003.
- J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 119–148. Zbl0870.34060MR1401420
- C. Procesi and M. Procesi, A normal form of the nonlinear Schrödinger equation with analytic non–linearities, Comm. Math. Phys312 (2012), 501-557. Zbl1277.35318MR2917174
- C. Procesi and M. Procesi, A KAM algorithm for the resonant nonlinear Schrödinger equation, preprint 2013. Zbl1312.37047
- W.-M. Wang, Nonlinear Schrödinger equations on the torus, Monograph, 156 pp, 2014 (submitted).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.