Recent results on KAM for multidimensional PDEs

Benoît Grébert[1]

  • [1] Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France

Journées Équations aux dérivées partielles (2014)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the d -dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When d 2 we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.

How to cite

top

Grébert, Benoît. "Recent results on KAM for multidimensional PDEs." Journées Équations aux dérivées partielles (2014): 1-12. <http://eudml.org/doc/275420>.

@article{Grébert2014,
abstract = {In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the $d$-dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When $d\ge 2$ we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.},
affiliation = {Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France},
author = {Grébert, Benoît},
journal = {Journées Équations aux dérivées partielles},
keywords = {Multidimensional PDEs; Quasi periodic solutions; KAM theory; stable and unstable tori},
language = {eng},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Recent results on KAM for multidimensional PDEs},
url = {http://eudml.org/doc/275420},
year = {2014},
}

TY - JOUR
AU - Grébert, Benoît
TI - Recent results on KAM for multidimensional PDEs
JO - Journées Équations aux dérivées partielles
PY - 2014
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the $d$-dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When $d\ge 2$ we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.
LA - eng
KW - Multidimensional PDEs; Quasi periodic solutions; KAM theory; stable and unstable tori
UR - http://eudml.org/doc/275420
ER -

References

top
  1. V.I. Arnold, Mathematical methods in classical mechanics; 3d edition, Springer-Verlag, Berlin, 2006. Zbl0386.70001
  2. M. Berti, P. Bolle, Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity25 (2012), 2579-2613. Zbl1262.35015MR2967117
  3. M. Berti, P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential, J. Eur. Math. Soc.15 (2013), 229-286. Zbl1260.35196MR2998835
  4. M. Berti, L. Corsi, M. Procesi, An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds, Comm. Math. Phys (2014). Zbl1312.35157
  5. M. Berti, M. Procesi, Nonlinear wave and Schrödinger equations on compact Lie groups and Homogeneous spaces, Duke Math. J.159, 479-538 (2011). Zbl1260.37045MR2831876
  6. J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. Math.148 (1998), 363-439. Zbl0928.35161MR1668547
  7. J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematical Studies, Princeton, 2004. Zbl1137.35001MR2100420
  8. R. De La Llave, C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, MPEJ10 (2004), paper 5. Zbl1136.37349MR2111299
  9. J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Comm. Partial Differential Equations39 (2014), 1Ð33. Zbl1291.35254MR3169778
  10. L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, in Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001. Zbl1015.34028MR1858550
  11. L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 2: a normal form theorem, preprint. MR1115677
  12. L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 1: small-amplitude solutions, preprint. 
  13. L. H. Eliasson and S. B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys.286 (2009), 125–135. Zbl1176.35141MR2470926
  14. L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math 172 (2010), 371-435. Zbl1201.35177MR2680422
  15. E. Fermi, J. R. Pasta and S. M. Ulam, Studies of nonlinear problems. Collected works of E. Fermi, vol.2. Chicago University Press, Chicago, 1965. Zbl0353.70028
  16. G. Gallavotti (editor). The Fermi-Pasta-Ulam problem Lectures Notes in Physics728 Springer-Verlag, Berlin, 2008 Zbl1138.81004MR2402016
  17. J. Geng and J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343–372. Zbl1103.37047MR2200264
  18. J. Geng and J. You, KAM tori for higher dimensional beam equations with constant potentials, Nonlinearity, 19 (2006), 2405–2423. Zbl1190.37082MR2260269
  19. B. Grébert, KAM for KG on 𝕊 2 and for the quantum harmonic oscillator on 2 , preprint arXiv:1410.8084. 
  20. B. Grébert and L. Thomann, KAM for the Quantum Harmonic Oscillator, Comm. Math. Phys., 307 (2011), 383–427. Zbl1250.81033MR2837120
  21. S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21 (1987), 192–205. Zbl0716.34083MR911772
  22. S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. Zbl0784.58028MR1290785
  23. S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math.143 (1996), 149–179. Zbl0847.35130MR1370761
  24. T. Kappeler and J. Pöschel, KAM & KdV, Springer-Verlag, Berlin, 2003. 
  25. J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 119–148. Zbl0870.34060MR1401420
  26. C. Procesi and M. Procesi, A normal form of the nonlinear Schrödinger equation with analytic non–linearities, Comm. Math. Phys312 (2012), 501-557. Zbl1277.35318MR2917174
  27. C. Procesi and M. Procesi, A KAM algorithm for the resonant nonlinear Schrödinger equation, preprint 2013. Zbl1312.37047
  28. W.-M. Wang, Nonlinear Schrödinger equations on the torus, Monograph, 156 pp, 2014 (submitted). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.