Amenable, transitive and faithful actions of groups acting on trees
Pierre Fima[1]
- [1] Université Denis-Diderot Paris 7, IMJ, Bâtiment Sophie Germain, case 7012, 75205 Paris cedex 13
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 1-17
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFima, Pierre. "Amenable, transitive and faithful actions of groups acting on trees." Annales de l’institut Fourier 64.1 (2014): 1-17. <http://eudml.org/doc/275431>.
@article{Fima2014,
abstract = {We study under which condition an amalgamated free product or an HNN-extension over a finite subgroup admits an amenable, transitive and faithful action on an infinite countable set. We show that such an action exists if the initial groups admit an amenable and almost free action with infinite orbits (e.g. virtually free groups or infinite amenable groups). Our result relies on the Baire category Theorem. We extend the result to groups acting on trees.},
affiliation = {Université Denis-Diderot Paris 7, IMJ, Bâtiment Sophie Germain, case 7012, 75205 Paris cedex 13},
author = {Fima, Pierre},
journal = {Annales de l’institut Fourier},
keywords = {amenable action; free product; HNN extension; groups acting on trees},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Association des Annales de l’institut Fourier},
title = {Amenable, transitive and faithful actions of groups acting on trees},
url = {http://eudml.org/doc/275431},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Fima, Pierre
TI - Amenable, transitive and faithful actions of groups acting on trees
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 1
EP - 17
AB - We study under which condition an amalgamated free product or an HNN-extension over a finite subgroup admits an amenable, transitive and faithful action on an infinite countable set. We show that such an action exists if the initial groups admit an amenable and almost free action with infinite orbits (e.g. virtually free groups or infinite amenable groups). Our result relies on the Baire category Theorem. We extend the result to groups acting on trees.
LA - eng
KW - amenable action; free product; HNN extension; groups acting on trees
UR - http://eudml.org/doc/275431
ER -
References
top- J. D. Dixon, Most finitely generated permutation groups are free, Bull. London Math. Soc. 22 (1990), 222-226 Zbl0675.20003MR1041134
- D. B. A. Epstein, Almost all subgroups of a Lie group are free, J. Algebra 19 (1971), 261-262 Zbl0222.22012MR281776
- Y. Glasner, N. Monod, Amenable action, free products and a fixed point property, Bull. Lond. Math. Soc. 39 (2007), 138-150 Zbl1207.43002MR2303529
- F. P. Greenleaf, Invariant means on topological groups and their applications, 16 (1969), Van Nostrand Reinhold Co., New York Zbl0174.19001MR251549
- R. Grigorchuk, V. Nekrashevych, Amenable actions of non amenable groups, Zap. Nauchn. Sem. S.-Peterburg Otdel. Math. Inst. Steklov (POMI) 326 (2005), 85-96 Zbl1127.43001MR2183217
- N. Monod, S. Popa, On co-amenability for groups and von Neumann algebras, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 82-87 Zbl1040.43001MR1999183
- S. Moon, Amenable actions of amalgamated free products, Groups, Geometry and Dynamics 4 (2010), 309-332 Zbl1193.43001MR2595094
- S. Moon, Amenable actions of amalgamated free products of free groups over a cyclic subgroup and generic property, Ann. Math. Blaise Pascal 18 (2011), 217-235 Zbl1246.43002MR2896486
- S. Moon, Permanent properties of amenable, transitive and faithful actions, Bull. Belgian Math. Soc. Simon Stevin 18 (2011), 287-296 Zbl1221.43002MR2848804
- J.-P. Serre, Arbres, amalgames, SL, 46 (1983) Zbl0369.20013
- E. K. van Douwen, Measures invariant under actions of , Topology Appl. 34 (1990), 53-68 Zbl0701.43001MR1035460
- J. von Neumann, Zusatz zur Arbeit “Zur allgemeinen Theorie des Masses”, Fund. Math. 13 (1929), 73-116
- R. J. Zimmer, Ergodic theory and semisimple groups,, (1984), Birkhäuser, Basel Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.