Exotic Deformations of Calabi-Yau Manifolds
Paolo de Bartolomeis[1]; Adriano Tomassini[2]
- [1] Università di Firenze Dipartimento di Matematica e Informatica “Ulisse Dini” Viale Morgagni 67/a 50134 Firenze (Italy)
- [2] Università di Parma Dipartimento di Matematica e Informatica Parco Area delle Scienze 53/A 43124 Parma (Italy)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 2, page 391-415
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topde Bartolomeis, Paolo, and Tomassini, Adriano. "Exotic Deformations of Calabi-Yau Manifolds." Annales de l’institut Fourier 63.2 (2013): 391-415. <http://eudml.org/doc/275436>.
@article{deBartolomeis2013,
abstract = {We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) $2n$-dimensional symplectic manifolds $(M,\kappa )$ endowed with a $\kappa $-tamed almost complex structure $J$ and with a nowhere vanishing and normalized section $\epsilon $ of the bundle $\Lambda ^\{n,0\}_J(M)$ satisfying the condition $\overline\{\partial \}_J\epsilon =0$.We study the moduli space $\mathfrak\{M\}$ of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that $\mathfrak\{M\}$ is non obstructed. Finally, we present several examples of QIS manifolds.},
affiliation = {Università di Firenze Dipartimento di Matematica e Informatica “Ulisse Dini” Viale Morgagni 67/a 50134 Firenze (Italy); Università di Parma Dipartimento di Matematica e Informatica Parco Area delle Scienze 53/A 43124 Parma (Italy)},
author = {de Bartolomeis, Paolo, Tomassini, Adriano},
journal = {Annales de l’institut Fourier},
keywords = {tamed symplectic structure; Calabi-Yau manifold; quantum inner state structure; deformation; moduli space; Calabi Yau manifold},
language = {eng},
number = {2},
pages = {391-415},
publisher = {Association des Annales de l’institut Fourier},
title = {Exotic Deformations of Calabi-Yau Manifolds},
url = {http://eudml.org/doc/275436},
volume = {63},
year = {2013},
}
TY - JOUR
AU - de Bartolomeis, Paolo
AU - Tomassini, Adriano
TI - Exotic Deformations of Calabi-Yau Manifolds
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 391
EP - 415
AB - We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) $2n$-dimensional symplectic manifolds $(M,\kappa )$ endowed with a $\kappa $-tamed almost complex structure $J$ and with a nowhere vanishing and normalized section $\epsilon $ of the bundle $\Lambda ^{n,0}_J(M)$ satisfying the condition $\overline{\partial }_J\epsilon =0$.We study the moduli space $\mathfrak{M}$ of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that $\mathfrak{M}$ is non obstructed. Finally, we present several examples of QIS manifolds.
LA - eng
KW - tamed symplectic structure; Calabi-Yau manifold; quantum inner state structure; deformation; moduli space; Calabi Yau manifold
UR - http://eudml.org/doc/275436
ER -
References
top- L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, (1963), Princeton University Press, Princeton, N.J. Zbl0106.36802
- Paolo de Bartolomeis, Some constructions with Symplectic Manifolds and Lagrangian Submanifolds Zbl1220.53064
- Paolo de Bartolomeis, Adriano Tomassini, On formality of some symplectic manifolds, Internat. Math. Res. Notices (2001), 1287-1314 Zbl1004.53068MR1866746
- Paolo de Bartolomeis, Adriano Tomassini, On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds, Internat. J. Math. 17 (2006), 921-947 Zbl1115.53053MR2261641
- Jeff Cheeger, Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443 Zbl0246.53049MR309010
- Pierre Deligne, Phillip Griffiths, John Morgan, Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274 Zbl0312.55011MR382702
- Marisa Fernández, Alfred Gray, Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata 34 (1990), 295-299 Zbl0703.53030MR1066580
- Akira Fujiki, Georg Schumacher, The moduli space of Kähler structures on a real compact symplectic manifold, Publ. Res. Inst. Math. Sci. 24 (1988), 141-168 Zbl0655.32020MR944870
- Keizo Hasegawa, Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom. 3 (2005), 749-767 Zbl1120.53043MR2235860
- Keizo Hasegawa, A note on compact solvmanifolds with Kähler structures, Osaka J. Math. 43 (2006), 131-135 Zbl1105.32017MR2222405
- Akio Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289-331 (1960) Zbl0099.18003MR124918
- Nigel Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), 281-308 Zbl1076.32019MR2013140
- Jacques Lafontaine, Michèle Audin, Introduction: applications of pseudo-holomorphic curves to symplectic topology, Holomorphic curves in symplectic geometry 117 (1994), 1-14, Birkhäuser, Basel MR1274924
- A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation 1951 (1951) MR39734
- Iku Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85-112 Zbl0297.32019MR393580
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) 1 (1987), 629-646, World Sci. Publishing, Singapore Zbl0696.53040MR915841
- Andrey N. Todorov, The Weil-Petersson geometry of the moduli space of (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989), 325-346 Zbl0688.53030MR1027500
- Dong Yan, Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), 143-154 Zbl0872.58002MR1392276
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.