# A Lagrangian approach for the compressible Navier-Stokes equations

Raphaël Danchin^{[1]}

- [1] Université Paris-Est LAMA, UMR 8050 & Institut Universitaire de France 61 avenue du Général de Gaulle 94010 Créteil Cedex (France)

Annales de l’institut Fourier (2014)

- Volume: 64, Issue: 2, page 753-791
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topDanchin, Raphaël. "A Lagrangian approach for the compressible Navier-Stokes equations." Annales de l’institut Fourier 64.2 (2014): 753-791. <http://eudml.org/doc/275445>.

@article{Danchin2014,

abstract = {Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in $\mathbb\{R\}^n$, in the critical Besov spaces setting. We improve recent results as regards the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution. Apart from (critical) regularity, the initial density just has to be bounded away from $0$ and to tend to some positive constant at infinity. Density-dependent viscosity coefficients may be considered. Using Lagrangian coordinates is the key to our statements as it enables us to solve the system by means of the basic contraction mapping theorem. As a consequence, conditions for uniqueness are the same as for existence, and Lipschitz continuity of the flow map (in Lagrangian coordinates) is established.},

affiliation = {Université Paris-Est LAMA, UMR 8050 & Institut Universitaire de France 61 avenue du Général de Gaulle 94010 Créteil Cedex (France)},

author = {Danchin, Raphaël},

journal = {Annales de l’institut Fourier},

keywords = {Compressible fluids; uniqueness; critical regularity; Lagrangian coordinates; compressible fluids},

language = {eng},

number = {2},

pages = {753-791},

publisher = {Association des Annales de l’institut Fourier},

title = {A Lagrangian approach for the compressible Navier-Stokes equations},

url = {http://eudml.org/doc/275445},

volume = {64},

year = {2014},

}

TY - JOUR

AU - Danchin, Raphaël

TI - A Lagrangian approach for the compressible Navier-Stokes equations

JO - Annales de l’institut Fourier

PY - 2014

PB - Association des Annales de l’institut Fourier

VL - 64

IS - 2

SP - 753

EP - 791

AB - Here we investigate the Cauchy problem for the barotropic Navier-Stokes equations in $\mathbb{R}^n$, in the critical Besov spaces setting. We improve recent results as regards the uniqueness condition: initial velocities in critical Besov spaces with (not too) negative indices generate a unique local solution. Apart from (critical) regularity, the initial density just has to be bounded away from $0$ and to tend to some positive constant at infinity. Density-dependent viscosity coefficients may be considered. Using Lagrangian coordinates is the key to our statements as it enables us to solve the system by means of the basic contraction mapping theorem. As a consequence, conditions for uniqueness are the same as for existence, and Lipschitz continuity of the flow map (in Lagrangian coordinates) is established.

LA - eng

KW - Compressible fluids; uniqueness; critical regularity; Lagrangian coordinates; compressible fluids

UR - http://eudml.org/doc/275445

ER -

## References

top- Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, 343 (2011), Springer, Heidelberg Zbl1227.35004MR2768550
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), 209-246 Zbl0495.35024MR631751
- Frédéric Charve, Raphaël Danchin, A global existence result for the compressible Navier-Stokes equations in the critical ${L}^{p}$ framework, Arch. Ration. Mech. Anal. 198 (2010), 233-271 Zbl1229.35167MR2679372
- Qionglei Chen, Changxing Miao, Zhifei Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math. 63 (2010), 1173-1224 Zbl1202.35002MR2675485
- Qionglei Chen, Changxing Miao, Zhifei Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam. 26 (2010), 915-946 Zbl1205.35189MR2789370
- Yonggeun Cho, Hi Jun Choe, Hyunseok Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl. (9) 83 (2004), 243-275 Zbl1080.35066MR2038120
- R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math. 141 (2000), 579-614 Zbl0958.35100MR1779621
- R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 12 (2005), 111-128 Zbl1125.76061MR2138937
- R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations 32 (2007), 1373-1397 Zbl1120.76052MR2354497
- Raphaël Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001), 1183-1233 Zbl1007.35071MR1855277
- Raphaël Danchin, On the solvability of the compressible Navier-Stokes system in bounded domains, Nonlinearity 23 (2010), 383-407 Zbl1184.35238MR2578484
- Raphaël Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the ${L}^{p}$ framework, J. Differential Equations 248 (2010), 2130-2170 Zbl1192.35137MR2595717
- Raphaël Danchin, Fourier analysis methods for compressible flows, (2012) Zbl1239.35001
- Raphaël Danchin, Piotr Bogusław Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Comm. Pure Appl. Math. 65 (2012), 1458-1480 Zbl1247.35088MR2957705
- Pierre Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. 13 (2011), 137-146 Zbl1270.35342MR2784900
- Boris Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal. 202 (2011), 427-460 Zbl06101956MR2847531
- Boris Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations 251 (2011), 2262-2295 Zbl1229.35182MR2823668
- David Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal. 37 (2006), 1742-1760 (electronic) Zbl1100.76052MR2213392
- N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 96 (2008), American Mathematical Society, Providence, RI Zbl1147.35001MR2435520
- Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, 10 (1998), The Clarendon Press, Oxford University Press, New York Zbl0908.76004MR1637634
- Piotr Bogusław Mucha, The Cauchy problem for the compressible Navier-Stokes equations in the ${L}_{p}$-framework, Nonlinear Anal. 52 (2003), 1379-1392 Zbl1048.35065MR1941263
- Alberto Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl. (4) 130 (1982), 197-213 Zbl0599.76081MR663971
- Alberto Valli, Wojciech M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), 259-296 Zbl0611.76082MR826865